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Abstract

This paper reproduces the dynamics of quantum mechanics with a four-dimensional spacetime mani-
fold that is branched and embedded in a six-dimensional Minkowski space [1–4]. Elementary fermions
are represented by knots in the manifold, and these knots have the properties of the familiar parti-
cles [5–7]. We derive a continuous model that approximates the behavior of the manifold’s discrete
branches [8]. The model produces dynamics on the manifold that corresponds to the gravitational,
strong, and electroweak interactions [9].
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1 Introduction

Physics possesses two fundamental theories, general relativity and the Standard Model, both strongly
tested and verified in their respective domains [10, 11]. A naive combination of these theories results in
unresolvable infinities [12]. Theorists have produced quantum theories of gravity with varying degrees of
success. String theory (or M-theory) makes few assumptions and has few parameters, and it produces a
quantum theory of gravity along with producing familiar particles [13]. Unfortunately, string theory does
not specify a particular choice for the way the vacuum’s small dimensions should curl up, and most or all
predictions depend on this configuration of the Calabi-Yau space [14]. Loop quantum gravity makes few
assumptions and has few parameters, and it produces a quantum theory of gravity and explains a few
astrophysical phenomena. Unfortunately, its predictions and explanatory power are quite limited [15].

Like string theory, the theory presented here makes few assumptions and has few free parameters, and
it also produces a quantum theory of gravity, as well as the familiar forces and particles. By contrast,
however, it has greater explanatory power and the power to predict observations at energies achievable
with current technology.

The theory is fully geometric. We assume that the spacetime manifold can be knotted. From knot theory
we know that a piecewise linear n-manifold can be knotted only if it is embedded in an n+2-dimensional
space [16]. Therefore we assume the 4-dimensional spacetime manifold is embedded in a 6-dimensional
Minkowski space. We assume that the manifold is branched so that paths along the manifold may
separate and recombine. In this way we introduce interference and thus a probabilistic theory [8].

In this paper we will present the assumptions and structure of this theory, as well as work out the
implications of those assumptions in some natural limits and show how the theory works in doing some
calculations.

2 First principles

2.1 Dynamical Variables

The dynamical variables are the shape of the 4-dimensional spacetime manifold M ; the vector field Aν ;
and the scalar field ρ, a conformal weight. The vector Aν is a function of M and is 6-dimensional, and ρ
is a function of M . The manifold M is embedded in a Minkowski 6-space Ω. The vector field Aν exists
not only in the tangent space of M but in the tangent space of Ω.

2.2 Derivatives

The metric on Ω is ηµν = diag(1,−1,−1,−1,−1,−1) with coordinates xν , where ν = 0, 1, ..., 5. The
manifold M inherits the coordinates xν . The restriction of ηµν to M is the metric η̄µν . If M is flat
and in the span of the first four coordinates, then we can choose η̄µν = diag(1,−1,−1,−1, 0, 0). Often
we think of taking covariant derivatives of tensors on a curved manifold M , which requires parallel
translation of tensors so that they are defined within the tangent space of the manifold. Covariant
derivatives with respect to the metric on the manifold are still well defined. We can also, however,
determine the rate of change of a tensor with respect to distances in the 6-space Ω. Because the tensor
is defined with respect to the tangent space of Ω, no parallel translation is required and we can use
ordinary partial derivatives with respect to xν . If T is a tensor on M , we will define the rate of change
of T in a direction perpendicular to the manifold to be zero. Let v̄µ be the projection of vµ onto M . In
this case we can find ∂µT , and the rate of change in the direction of vector vµ is vµ(∂µT ) = v̄µ(∂µT ).
For example, in terms of ordinary partials, the inherited metric can be written

η̄µν = xα,µxα,ν . (1)

Here, xα are the coordinates on the manifold M , inherited from the coordinates of Ω.
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2.3 Branched Manifolds

Branched paths on M allow for interference in calculations and thus for a quantum theory [17]. An
embedded branched n-manifold is an embedded n-complex such that each point has a well-defined n-
dimensional tangent space. In this theory we use M , a branched 4-manifold embedded in a 6-dimensional
Minkowski space. We define B to be a branch of M if B is a closed unbranched 4-manifold without
boundary and B is contained in M . In Figure 1(c) we see a branched 1+1 manifold Y . The t coordinate
is timelike, and the x and y coordinates are spacelike. The branches B1 and B2 making up Y are shown
in blue in Figure 1(a) and Figure 1(b). The manifold Y is embedded in a 2+1 Minkowski space. The
branches separate on the dashed line segments, and on these segments the tangent spaces of B1 and
B2 coincide. The black curves represent the paths of knots on Y . In this figure, branch B1 has infinite
extent, as does B2. They are separate for only a finite time. Where distinct branches Bi intersect, the
tangent spaces of the branches must be consistent; this may pose a problem only where the branches B1

and B2 separate. Eventually we will be performing sums over multiple histories, and each branch will
represent a history.

(a) (b) (c)

Figure 1: The first two diagrams (a) and (b) show two branches of a 1+1 manifold
Y , shown in (c). Y consists of branches B1 and B2, and Y is embedded in a 2+1
Minkowski space. The branches separate on the dashed line. On the dashed line, the
tangent space of B1 is the same as that of B2. The black curves are the paths of knots
on Y .

2.4 Constraints

So far we have not introduced any constraints on the manifold M or Aν or ρ. First we introduce a metric
gµν that is distinct from η̄µν . We will use the vector field Aν and the conformal weight ρ to define the
metric [18]

gµν = ρ2Aα,µA
α
,ν . (2)

In any local neighborhood, we can think of Aν as being analogous to a coordinate system and the metric
gµν as a measurement of the rate at which Aν changes, weighted by ρ. The picture of Aν as a coordinate
system will be a helpful metaphor. We constrain Aν by the equation

det(Aα,µA
α
,ν) = −1. (3)

The tensor Aα,µA
α
,ν has six dimensions and rank 2. As a matrix in six dimensions, it has determinant

zero, but considered as a tensor on the 4-dimensional tangent space of M , the determinant is non-zero,
and that is the determinant we use here. For example, Aν = xν always satisfies the condition regardless
of manifold geometry because det(xα,µx

α
,ν) = det(η̄µν) = −1.

We can determine the Riemann and the Ricci tensors for M relative to gµν . Now we require that the

Ricci tensor be flat. We write R̂µν to indicate Ricci curvature relative to the metric gµν (in contrast to
Ricci curvature relative to η̄µν which we write Rµν). Then the constraining equation of the manifold is

R̂µν = 0. (4)

We define a branch weight as follows

w = (−det(g))1/2 = ρ4. (5)
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Ricci flatness implies that the translation of an infinitesimal ball along initially parallel geodesics will
preserve the volume of the ball [19]. Therefore the weight w of the ball is preserved by translation
along geodesics of gµν . The manifold M is branched, and we assume that the weight is also preserved
at branchings. This implies the conformal weight ρ changes at branchings such that the weight w is
additive. Ricci flatness R̂µν = 0 therefore extends in a natural way to the branched manifold M . We
introduce the assumption that the manifold can branch only a finite number of times by introducing the
constraint

w ≥ 1. (6)

A branch with initial weight w can therefore branch no more than w times. In Figure 2 we see branched
manifold Y , as well as a spacelike slice through that manifold.

(a) (b)

Figure 2: (a) We take a slice through a branched manifold Y . (b) We show that
slice. At the branch separation, the branches have weights w1 and w2 (black dots).
The weights are additive such that the combined branch has weight w3 = w1 + w2

(white dot). The thickness of the slice represents the weight but does not correspond
to an actual thickness.

As we discussed, Ricci flatness, R̂µν = 0, implies that the translation of an infinitesimal ball along initially
parallel geodesics preserves the ball’s volume with respect to gµν . If a section of the manifold were to
increase in volume over time, we can conserve the integrated weight over the volume by decreasing
the weight over the volume. We see this in Figure 3 where the manifold stretches and the weight w
compensates for the stretching.

The branch weight w is conserved at branching, and therefore branching reduces the weight on each
branch. We see this in Figure 4 where a branched 1+1-manifold stretches. As the volume increases,
the weight w decreases to compensate for it. The weight is constrained by w ≥ 1. As w approaches 1,
the only way to continue to extend the volume is by removing weight from the branches and then by
reducing the number of branches. When there is only one branch and w = 1, it is no longer possible to
increase the volume. Thus the constraint R̂µν = 0 implies an exchange between branching and volume.

We have introduced the metric gµν = ρ2Aα,µA
α
,ν constrained by det(Aα,µA

α
,ν) = −1, R̂µν = 0, and

w = (−det(g))1/2 = ρ4 ≥ 1. We will introduce another constraint as follows: Let η+ be the set of points
at positive distance from p and in the future of p relative to ηµν , as shown in the Figure 5(a). Let g+ be
the set of points at positive distance from p and in the future of p relative to gµν , as shown in Figure 5(b).
We require that the sets η+ and g+ intersect, as shown in Figure 5(c). The effect of this constraint is to
set a limit on Aν,µ.
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(a) (b) (c)

Figure 3: (a) We see a flat 1+1 manifold in which the thickness of the horizontal
blue lines represents the weight w in a sequence of spacelike slices. (b) The manifold
stretches over time in the direction of the y-axis. The weight w reduces to compensate
for the increased volume. (c) We see the sequence of slices from diagram (b). The
total weight in each slice is conserved while the volume increases.

(a) (b) (c)

Figure 4: (a) We see a flat 1+1 manifold. (b) The manifold is branched such that
the branches separate on the dashed line. The manifold stretches over time in the
direction of the y-axis. The weight w reduces to compensate for the increased volume
until there can only be one branch. (c) We see the sequence of slices from diagram (b)
showing both weight and branching. The total weight in each slice is conserved while
the volume increases.

(a) (b) (c)

Figure 5: We examine causal cones in a small region such that the geometry and Aν

field are approximately linear. (a) Points in gray have xν displacement ∆xν∆xν ≥ 0.
(b) Points in green have Aν displacement ∆Aν∆Aν ≥ 0. (c) The constraint requires
that the future Aν cone intersects the future xν cone.
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3 Assumptions

The assumptions are the following:

• We assume a Minkowski 6-space Ω. The metric on Ω is ηµν = diag(1,−1,−1,−1,−1,−1).
The coordinates are xν . The dimension of the Minkowski space is chosen to allow the spacetime
manifold to form knots.

• We assume a branched 4-manifold M embedded in Ω. A branch of M is any closed
unbranched 4-manifold B without boundary that is contained in M . The manifold is branched so
that it can produce quantum properties. The metric η̄µν on M is inherited from Ω. For convenience
of coordinates we assume that, if M is flat, then M is in the subspace spanned by x0, x1, x2, x3.

• We assume non-self-intersection of each branch of M . For any branch B, the branch B
cannot intersect itself. This is necessary to prevent knots from spontaneously untying.

• We assume a vector field Aν . The field satisfies det(Aα,µA
α
,ν) = −1.

• We assume a conformal weight ρ. Then we define the metric gµν = ρ2Aα,µA
α
,ν and a Ricci

curvature R̂µν based on gµν .

• We assume a constraint on gµν relative to ηµν . The metrics gµν and ηµν define sets g+ and
η+, and we assume that g+ must intersect η+. We recall that, for a point p, the sets g+ and η+

are the sets of points at positive distance from p, with respect to the metrics g and η. (In the
Minkowski space, the set η+ is the future light cone of the Minkowski metric η.) This constraint
on the metrics produces an important constraint on the electromagnetic potential.

• We assume Ricci flatness R̂µν = 0 for gµν . This assumption, and the next two assump-
tions, prevent multiple kinds of divergent behavior. For example, they prevent the manifold from
branching an infinite number of times.

• We assume that the weight w = (−det(g))1/2 = ρ4 is conserved at branching.

• We assume a lower limit w ≥ 1.

4 Calculation in Principle

A physical theory must produce predictions for the results of experiments or at least, as in the case
of a quantum theory, the probabilities of certain outcomes. In this section we present an overview of
calculating the probability that an electron, starting at p at time t1 will be measured at q at time t2, as in
a two-slit experiment. The formalism for calculating other probabilities, such as for an electron-positron
pair to form a muon and antimuon, involves the addition of other factors.

Calculations in this theory resemble Feynman’s sum over histories, except that Feynman’s paths cover
a continuum of spacetime, and paths in this theory are discrete. For the electron mentioned before,
we represent it as a knot in the spacetime manifold M . The manifold M is dynamical, branching and
recombining continually. Although there are some constraints on the structure of the manifold, it is
underconstrained. Of all the configurations the manifold might take, it tends to take one of maximum
entropy [20].

The manifold branches, and knots on the manifold separate along with the branches (as we saw in
Figure 1). The knots on the various branches are free to rotate and grow or shrink in the x4 and x5

coordinates. We express the magnitude of the knot in the x4 and x5 coordinates by ξ and the phase
angle of the knot by θ. We describe the knot geometry [21] by the amplitude a = ξeiθ. When branches
recombine, knots on the branches recombine, and the amplitude of the resulting knot depends on the
incoming branches and knots. The dynamics of manifold branching and knot recombination determine
the paths that yield a desired event or interaction. For example, we could determine the amplitude for
an electron starting at p at time t1 to be measured in a region dV around q at time t2. The number of
amplitudes in the sum is quite large but not infinite.
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We can alternatively approximate the amplitudes on a collection of branches by a complex amplitude
ψ, which we will call the quantum amplitude. When collections of branches combine, the quantum
amplitude is additive, so that ψsum = ψ1 + ψ2. We can calculate the probability using the quantum
amplitude, summing over all paths that produce the event or interaction. Later (Section 7) we will show
how this approximation reproduces the path integral of quantum mechanics [22].

The primary difference between this theory and standard quantum mechanics is that this theory involves
a discrete and finite sum, while quantum mechanics involves a sum over a continuum. We can clarify
this statistical description of the branched manifold by introducing an analogy with heat transfer in a
crystalline solid. We can model the solid as atoms that transfer momentum during collisions. Carried
out in detail, such a calculation is intractable, requiring knowledge of initial conditions that is never
available. Nevertheless this model closely resembles the physics. We can also model the solid with a
continuous approximation, that is, using the heat equation. This model is not as physical, but it is
tractable. In this paper we will show that the dynamics of the discrete, interacting branches, which we
claim reflects the physics, can be approximated in a continuous expression, the Feynman path integral.
Because we are modeling a system with a finite number of branches, our calculations do not yield the
usual infinities [23].

5 Lagrangian

Instead of following the physics tradition of simply stating an expression for a Lagrangian, we will seek
to derive a Lagrangian by considering what condition will maximize the entropy of M .

5.1 Branch Cohesion

The probability of an event is proportional to the number of branches that result in that event. Re-
combination increases the number of branches. In Figure 6(a), two branches result in the event, the
left branch and the right branch. In Figure 6(b), four branches result in the event: left-left, left-right,
right-left, and right-right. In Figure 6(c), many branches result in the particular event. Recombination
increases as branches become closer, so that probability increases as branches become closer. Branches
must have the same topology in order to recombine. Therefore, branch recombination can occur only
if the knots on the branches match when the branches recombine. As we can see from Figure 6, as the
number of recombinations increases, the entropy also increases.

(a) (b) (c)

Figure 6: These are three diagrams of a branched 0+1 manifold. (a) We see two
branches. (b) We see four branches: left-left, left-right, right-left, and right-right. (c)
Staying close increases the number of branches and therefore increases the probability.
The manifold maximizes entropy by keeping the branches close.

5.2 Modeling M with an Unbranched Manifold

Because the branches of M stay close to each other, it is possible to approximate the shape of M with
an unbranched manifold. We will define ΦM as the unbranched manifold with Aν field such that M is
as close as possible to ΦM in both geometry and Aν field. Let the weight w on ΦM be the sum of the
weights on the branches of M . In Figure 7 we see a model of such an approximation in that the thick
light blue band represents a 0+1 branched manifold C. The dark blue curve represents the manifold ΦC .
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We define the Lagrangian L on ΦM to be the maximum entropy that M can achieve when it is close to
ΦM . The branched manifold M maximizes entropy, and we can find ΦM to maximize the entropy and
thus the Lagrangian. Once we derive the Lagrangian L, we will be able to characterize the behavior of
M by finding the unbranched manifold ΦM that maximizes L [24].

Figure 7: The light blue line represents the branches of a branched 0+1-manifold C.
The dark blue line is the manifold ΦC such that C is as close as possible to ΦC . The
weight w on ΦC is equal to the sum of the weights on the branches of C.

5.3 Entropy and Curvature

We begin by considering a 1-dimensional manifold C with a fixed length and a fixed boundary. If the
manifold is stretched tight, then its entropy is very low, as we see in Figure 8(a). Here the blue curve
represents the manifold C. The entropy of C is maximized when C is as close as possible to the straight
line connecting its boundary points, as we see in Figure 8(c). If C is a manifold of fixed n-volume with
fixed boundary, then the entropy of C is maximized when C is as close as possible to the manifold ΦC
of minimal volume with the same boundary. In order for the manifold ΦC to have minimal volume,
it is necessary that the quantity

∫
ΦC

R dΦC be minimized or that the action S[ΦC ] =
∫

ΦC
−R dΦC be

maximized, where R is the scalar curvature.

(a) (b) (c)

Figure 8: A curve C has fixed endpoints and fixed length. The entropy of C is
maximized when C is as close as possible to the straight line connecting its endpoints.

Now we consider a branched 1-manifold C that has a fixed total weight
∫
C
w dC and a fixed boundary.

Again, if the manifold is stretched tight then its entropy is very low. Because the entropy increases with
an increasing number of branches, the manifold maximizes its entropy by being as close as possible to
the straight line connecting its boundary points. In Figure 9 we see that the stretched manifold has only
one branch, while the unstretched manifold has multiple branches and therefore greater entropy. A n-
dimensional branched manifold maximizes its entropy by being as close as possible to the minimal volume
manifold with the same boundary. This implies the action S[ΦC ] =

∫
ΦC
−R dΦC is maximized [25].

(a) (b)

Figure 9: A branched curve C has fixed endpoints and fixed length. The entropy
of C is maximized when C is as close as possible to the straight line connecting its
endpoints.

In Section B of the Appendix we show that the amount of recombination is proportional to the number
of branches. The number of branches is linear in the weight w. The amount of recombination is therefore
linear in w. The entropy is linear in the amount of recombination. Therefore, the entropy is linear in
weight w, and the action as a function of geometry is

S[ΦM ] =

∫
ΦM

−wR dΦM . (7)
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5.4 Entropy and Field

The Aν field on M is constrained as described in Section 2.4. The metric gµν = ρ2Aα,µA
α
,ν and the

metric ηµν have future causal cones g+ and η+ that must intersect. This constraint on the metric gµν
limits the range of Aν,µ. In Figure 10(a), the A0 coordinate and the t coordinate nearly coincide, and
the future causal cones η+ and g+ nearly coincide. Curves of constant A0 are not quite the same as lines
of constant t. The large number of variations in A0 indicates a large entropy. In Figure 10(b), the Aν

field is closer to its limit. In the figure, the variations in A0 must not have the effect of causing g+ to no
longer intersect η+. This limits the magnitude of Aν,µ and reduces the entropy in Aν . To summarize,
the constraint on future and past causal cones sets a constraint on the metric gµν , and this limits the
range of Aν,µ. Furthermore, as Aν,µ approaches this limit, the entropy decreases.

(a) (b)

Figure 10: These are two diagrams of sets of constant A0. Ricci flatness R̂µν = 0
allows random variation of the field Aν . The constraint on gµν relative to ηµν limits
Aν,µ. (a) There is a weak electric field, and Aν,µ is far from its limit. The entropy is
large. (b) There is a strong electric field, and Aν,µ is close to its limit. The entropy is
small.

So far we have introduced Aν as a fundamental dynamical variable and connected it to the metric
gµν . The field Aν plays another role in this theory, and it is no coincidence we called it Aν ; it is the
6-dimensional analog to the electromagnetic potential. Thus we can write an analogous 6-dimensional
electromagnetic field tensor on M :

Fµν = Aν,µ −Aµ,ν . (8)

We want to derive entropy as a function of Fµν . In order to do this we need to translate the constraint
that the future cone g+ must intersect the future cone η+ into a condition on Fµν . We begin by
considering a weak field limit for Aν so that Fµν is small.

By eigenvector decomposition, Aν,µ can be described as scaling of vectors and rotations. Only rotations
can reduce the intersection of g+ and η+ or even cause them not to intersect. Therefore, to leading order,
only rotations affect entropy. Note in Figure 5 that a greater rotation leads to a smaller intersection of
g+ and η+ and in Figure 10 that this leads to less entropy. In general a matrix Q can be decomposed into
symmetric and antisymmetric components, Q = S+A, where S = (1/2)(Q+QT ) and A = (1/2)(Q−QT ).
In the case of an infinitesimal rotation matrix, we have Q ≈ I +A for infinitesimal antisymmetric A.

Since we define Fµν = Aν,µ − Aµ,ν in analogy with electromagnetic theory, and it is an antisymmet-
ric tensor, it is the rotational component of Aν,µ. The Lorentz invariant magnitude of the rotational
component of Aν,µ is FµνFµν .

As the electric field becomes large, either A0
,ν or Aν,0 becomes large, and the future causal cone g+

is rotated relative to the future causal cone η+. Entropy decreases. Thus we expect that entropy is
proportional to FµνFµν . The quantity FµνFµν decreases on every branch, so we expect entropy to be
proportional to the number of branches or, rather, to the branch weight w. We therefore write the
linearized Lagrangian as the entropy L = w(1/2)FµνFµν and the action as

S[ΦM ] =

∫
ΦM

1

2
wFµνFµν dΦM . (9)
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According to Equation (9), the quantity S[ΦM ] does not diverge no matter how large Fµν is. We know,
however, that as the future causal cone g+ begins to lose its intersection with η+, the entropy, the
Lagrangian, and the action S[ΦM ] must diverge. Hence the relationship between the Lagrangian (and
action) and FµνFµν must be nonlinear. Equation (9) represents the lowest order approximation of the
actual (nonlinear) expression.

5.5 Lagrangian and Energy

Including the effects of both the geometry and the Aν field, we write the Lagrangian on ΦM as

L = w
(1

2
FµνFµν −R

)
(10)

and the corresponding action as

S[ΦM ] =

∫
ΦM

w
(1

2
FµνFµν −R

)
dΦM . (11)

Here we have combined eqns. (7) and (9). The first term is FµνFµν , familiar from electromagnetism.
The second term is scalar curvature R, familiar from general relativity. We will see later how these terms
generate the properties of electromagnetism and gravity with which we are familiar.

We can use Equation (11) to obtain the energy-momentum tensor. We defined the manifold ΦM as
the unbranched manifold such that M is as close as possible to ΦM , where M maximizes entropy. The
manifold ΦM does not necessarily coincide with flat space, but we may want to express the measure
dΦM in terms of the flat space measure dtdV .

If an element of dΦM moves with a velocity β relative to flat spacetime, then we write

dΦM =
1

γ
dtdV. (12)

We denote the energy-momentum of some matter-energy at rest as TµνrestdΦM . We can boost to another
frame in order to find the energy-momentum TµνdΦM . We can see this illustrated in Figure 11. In
Figure 11(a), we see a manifold at rest, while in Figure 11(b) we see a manifold in motion. If some
matter-energy has energy-momentum Tµνrest in the manifold in Figure 11(a), it will have energy-momentum
Tµν in the manifold in Figure 11(b), where Tµν is the Lorentz transformation of Tµνrest. If the manifold
moves in a direction that is not tangent to the manifold, for example, if ΦM has motion given by
~β = (1, 0, 0, 0,−β, 0), then we write

TµνdΦM =


γ2T 00

rest T 01
rest T 02

rest T 03
rest βγ2T 00

rest 0
T 10

rest T 11
rest T 12

rest T 13
rest 0 0

T 20
rest T 21

rest T 22
rest T 23

rest 0 0
T 30

rest T 31
rest T 32

rest T 33
rest 0 0

βγ2T 00
rest 0 0 0 β2γ2T 00

rest 0
0 0 0 0 0 0


( 1

γ

)
dtdV. (13)

The change of measure from dΦM to dtdV can confuse the quantity Tµν but we can correct that by
referring to the action S that is the integral over space and time. For example, to compare the energy,
we can use the integral over space and time,

∫
E dt =

∫
γT 00

restdtdV , and see that, on some small volume
dV , we have E = γT 00

restdV . For a volume dV of spacetime, the energy is γT 00
restdV and the momentum

is βγT 00
restdV in the direction of motion. The familiar expression for rest mass, momentum, and total

energy results from motion that is not in the direction of the tangent space of ΦM at dV . Thus, knots
have rest mass because the tangent space of the knot is not parallel to flat spacetime. When a knot
moves parallel to spacetime, parts of its geometry extend in directions x4 and x5, and its motion is not
in the direction of the tangent space on those parts [26]. See Figure 12.

6 Elementary fermions as knots

Elementary fermions all have the same topology, R3#(S1 × P 2), which we will refer to as a knot and
which we will describe in this section. This topology is significant because the equation R̂µν = 0 strongly
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(a) (b)

Figure 11: (a) A section of the manifold is at rest. (b) We show a section of the
manifold in motion in the −y direction. The energy-momentum tensor Tµν is the
Lorentz transformation of Tµνrest, the energy-momentum in the rest frame.

Figure 12: A knot in the manifold is not flat. If the knot is in motion with velocity
v then there are points on the knot where that velocity is not in the tangent space.
This implies that Lorentz transformations of the energy-momentum tensor at those
points correspond to rest mass.

constrains the way that the spacetime manifold M can change topology. The manifold M can, however,
change topology to produce pairs of R3#(S1 × P 2). We first describe the knot R3#(S1 × P 2) and then
show how to create pairs of R3#(S1×P 2) subject to R̂µν = 0. Subsequently we show how R3#(S1×P 2)
has properties corresponding to the elementary fermions [27–30].

6.1 Fermion Topological Properties

To describe the topology of an elementary fermion R3#(S1×P 2), we begin by considering a simpler case
in two dimensions, R2#P 2. To make R2#P 2 we begin with R2 − D2, the plane with a disk removed.
Then we identify the points on the boundary of the disk such that each point is identified with the point
that is diametrically opposite. We see this illustrated in Figure 13. The resulting topology is R2#P 2,
and it is non-orientable. If we follow a path that passes through the P 2 then we find that the orientation
of a coordinate frame translated along that path is reversed. Likewise, if we cut a narrow strip around
that path, the result is a Möbius strip.

To make R3#(S1 × P 2) we perform a similar procedure. In cylindrical coordinates, we remove a solid
torus T centered around the circle at z = 0 and r = a. In every constant φ slice we have a removed disk,
as in the case of R2#P 2. In each slice we perform the same point identification of diametrically opposite
points. The result is R3#(S1 × P 2). We see this illustrated in Figure 14.

We note that R3#(S1 × P 2) is also non-orientable. This implies that there is no consistent coordinate
frame on the manifold that is based on the rotation group SO(3). However, as with all non-orientable
manifolds, we can use a coordinate frame that is based on the double cover of the rotation group. Instead
of using the Lorentz transformations SO(3) we use the group SU(2), as we do for elementary fermions.
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(a) (b)

Figure 13: (a) We show R2 −D2. The orange circle is the boundary of the removed
D2. We identify each point on the boundary with the point that is diametrically
opposite, for example the points p and q shown here. This makes R2#P 2. (b) We
show R2#P 2 with a particular path through the P 2 shown in blue. We see that
the outer blue circle connects to the inner blue circle across the P 2. Translating a
coordinate frame along that path reverses the orientation. Cutting a strip around
that path produces a Möbius strip [31].

(a) (b)

Figure 14: (a) We show R2#P 2. (b) We show a slice through R3#(S1 × P 2) at
angle φ. In that slice we have R2#P 2.

6.2 Toroidal Coordinates

R3 has toroidal coordinates (τ, σ, φ) that relate to cylindrical coordinates (r, z, φ) as follows:

r = a
sinh τ

cosh τ − cosσ

z = a
sinσ

cosh τ − cosσ
.

(14)

The sets of constant τ are tori centered around a circle of radius a. At distance zero from the circle we
have τ =∞. At infinite distance from the circle we have τ = 0. The sets of constant σ are spheres such
that their intersection with sets of constant τ are orthogonal. Close to the circle, the coordinate σ is a
polar angle around the circle. Toroidal coordinates are an orthogonal coordinate system [32–35]. Their
properties assist with field equations. We see sets of constant τ and σ illustrated in Figure 15.

6.3 Mapping Coordinates

We use a map from 3 dimensions to 5 dimensions to describe an elementary fermion R3#(S1×P 2). The
coordinates of the 3-space are toroidal coordinates (τ, σ, φ) and the coordinates of the 5-space are a mix
of toroidal and Cartesian coordinates (τ, σ, φ, x4, x5). If we denote by T the solid torus τ > 1, then we
can map from R3 − T to R5 using

X(τ, σ, φ) =
( τ

1− τ
, σ, φ, τ sin(2σ), τ cos(2σ)

)
. (15)
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Figure 15: This is a diagram of bipolar coordinates. The diagram shows sets of
constant τ in blue and sets of constant σ in red in the rz plane. The value of τ
increases to infinity as the size of the blue circles goes to zero. We extend to 3-
dimensional toroidal coordinates by including the polar angle φ that has the same
form as the polar angle of cylindrical coordinates.

The domain of the map is R3 − T , which is R3 with the solid torus T removed, where τ > 1. The map
stretches R3 − T to cover the missing torus using τ → τ/(1 − τ), so that points on the surface of the
torus (τ = 1) map to the circle at the center of the torus (τ =∞). Not only that, the map makes each
point on the boundary of T identical to the point that is diametrically opposite it. This happens because
we have

X(1, σ + π, φ) = (∞, σ + π, φ, sin(2σ + 2π), cos(2σ + 2π))

= (∞, σ, φ, sin(2σ + 2π), cos(2σ + 2π))

= (∞, σ, φ, sin(2σ), cos(2σ))

= X(1, σ, φ). (16)

(The second equality is due to change of the σ coordinate, which is a polar coordinate such that all
values of σ are equivalent at τ =∞.) We see this illustrated in Figure 16.

The map X produces a knot R3#(S1 × P 2). In addition, however, the condition R̂µν = 0 places a
constraint on the conformal weight ρ. See Section C in the Appendix for details.

6.4 Topology Change on M

In this theory we assume that, with respect to gµν , the manifold is Ricci flat, R̂µν = 0. To understand
how this relates to particles, knots, and topology change, it helps to compare this assumption to the
typical assumption of knot theory [36].

In knot theory it is typically assumed that the manifold must be locally flat. This means that, with
respect to the metric η̄µν , the Riemann curvature Rαβµν of M must be finite. Local flatness prevents the
degenerate case that any knot could shrink continuously down to a point, thus disappearing. Likewise,
the same process could happen in reverse, thus producing any knot. We see this illustrated in Figure 17.
If, however, we do assume that M is locally flat with respect to η̄µν , then no topological change is
possible [37], and then there could be no particle/anti-particle pair production of knots.

In this theory, we do not assume local flatness with respect to η̄µν , but we assume Ricci flatness R̂µν = 0
with respect to gµν . This allows limited topological change, producing knots of the form R3#(S1×P 2).
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(a) (b)

Figure 16: (a) We show R2−D2 with polar angle σ. (b) We show R3−T , in toroidal
coordinates, with a slice at φ = φ0. At the orange circle we have τ = 1. The map
X makes opposite points on the circumference of the orange circle identical. This
identification of diametrically opposite points creates the topology R2#P 2 in diagram
(a) and the topology R3#(S1 × P 2) in diagram (b).

Figure 17: Any knot K, on the left, can be continuously shrunk down to point, thus
disappearing. Likewise the same process can happen in reverse, producing any knot
from a flat manifold. As the knot shrinks, the Riemann curvature becomes infinite. In
knot theory, it is assumed that the Riemann curvature must be finite, which prevents
this process. In this theory we assume only that Ricci curvature is zero, R̂µν = 0.

We next show these knots can be created subject to R̂µν = 0.

6.5 Ricci Flat Pair Annihilation and Pair Creation

The dynamics of pair annihilation and creation is an important part of this theory, so we will take a
moment to explore the details of this process. We will look at the annihilation of a pair of topologies
R3#(S1 × P 2) subject to the condition R̂µν = 0.

In order to see a simple picture of this, consider Figure 18. In the first diagram we see two R2#P 2

topologies coming together. The arrows indicate the direction of A0
,ν (actually, two components of

the electric field). The diagram shows points p and q, each of which is represented in two places in
the diagram. In the second diagram the A0

,ν field is quite strong between the particles. In the third
diagram we see points p and q coincide, and the third and fourth diagrams are equivalent. The topology
and geometry are then simply R2. In this way we see two R2#P 2 topologies annihilate, much like the
annihilation of an electron and a positron [38].

More formally, we can annihilate pairs of R2#P 2 subject to R̂µν = 0. In the above discussion we need
points p and q to coincide, as in the third diagram of Figure 18. In the second diagram of Figure 18, p
and q are separated by a spacelike vector cν . In Figure 19, p and q are separated by a spacelike vector
according to the metric ηµν . We can choose A0

,ν in order to rotate the light cone at p, so that the
light cone for gµν at p contains q. In this case, gµνc

µcν = 0. This corresponds to the third diagram in
Figure 18.

This annihilation occurs in one slice of φ. We can construct such an annihilation in every slice of φ. Thus

15



Figure 18: We bring together two P 2 to annihilate. Annihilation requires that the
metric gµν becomes degenerate on the piece of the manifold between the two P 2. This
implies that there is an electric field between the two, indicated by the purple arrows.

Figure 19: Changing the Aν field changes the metric gµν . In the diagram there is an
electric field and the gµν distance between the points p and q is zero.

the topology of two particles R3#(S1×P 2)#(S1×P 2) can convert to the topology of no particles, which
is R3, while maintaining the condition R̂µν = 0 throughout the process. In order to maintain R̂µν = 0,
we see that A0

,ν , the electric field, must grow large between the particles before they annihilate.

The process of pair creation is simply the reverse of the annihilation process. During pair creation we
see that an A0

,ν field is created around each knot R3#(S1 × P 2). Each knot subsequently retains this
A0
,ν field as the topologies separate. For the creation of particle/anti-particle pairs this implies opposite

charge. See, however Section 6.9 for discussion of charged lepton and neutrino pair creation by a W
boson.

6.6 Generations

We have a knot, R3#(S1 × P 2), that corresponds to elementary fermions [39]. We have described that
knot using a map from R3 − T to R5:

X(τ, σ, φ) =
( τ

1− τ
, σ, φ, τ sin(2σ), τ cos(2σ)

)
. (17)

There are other ways of mapping to the knot R3#(S1 × P 2). We can modify the map so that we have

X(τ, σ, φ) =
( τ

1− τ
, σ, φ, τ sin(2σ + nφ), τ cos(2σ + nφ)

)
. (18)

In each slice of constant φ, there is a map of R2#P 2 in R4 that has the properties we portrayed in
Figure 13. As φ varies from 0 to 2π, the map rotates n times in the coordinates x4 and x5. We call such
a map R3#(S1×P 2)n. For every value of n ≥ 0, the maps of R3#(S1×P 2)n are distinct as embeddings.
This means that, if m 6= n, there is no way to continuously change R3#(S1×P 2)m into R3#(S1×P 2)n
without self-intersection. We propose, for example, that an electron is a charged knot with n = 0; a
muon, n = 1; a tau, n = 2.
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6.7 Quarks, Linked R3#(S1 × P 2)

Two or three of these knots R3#(S1 × P 2) can link [40]. If a knot R3#(S1 × P 2) is linked to another
such knot, then it represents a quark. We first describe in outline how such topologies can link to each
other, and later we show how these linkings have the properties of quarks [41].

We provide a simple description how two R3#(S1 × P 2) might link by proceeding in stages. Our first
goal is to link a pair of P 2 in the 2-dimensional manifold R2#P 2#P 2 embedded in 4-dimensional space.
First we build a knot R2#P 2 by considering R2 in polar coordinates, and we cut out the disk D2, which
consists of all points such that r < 1. Then we map R2 −D2 to R4 using Xb, such that the coordinate
system of R4 is polar in the first two coordinates and Cartesian in the last two, (r, θ, x4, x5):

Xb(r, θ) = (g(r), θ, b sin(2θ), b cos(2θ)) (19)

where

g(r) =

{
2r − 2 if r < 2

r otherwise.

The function g(r) pulls the boundary of the disk together, because g(1) = 0. The points that are
diametrically opposite to each other are mapped to the same point in R4. In this way the map r → g(r)
performs the same purpose as the toroidal coordinates τ → τ/(1− τ) in Equation (15). The x4 and x5

coordinates of the map are scaled by the constant b everywhere. The result is R2#P 2. Next, we can use
two maps X1 and X2, as in the left figure of Figure 20. The map X1 is scaled by b = 1, and the map X2

is scaled by b = 2. The maps X1 and X2 are both maps from R2−D2 to R4. They do not intersect each
other but they cannot be separated without intersection. We now truncate X1 and X2 to half-planes
and join them at the boundary, as in the middle figure of Figure 20. The result is R2#P 2#P 2 and the
P 2 are linked. If that manifold changes continuously without self-intersection, then the P 2 will remain
linked. For example, we can unfold the joined half-planes, as in the right diagram of Figure 20.

Figure 20: (a) We show 2 copies of R2#P 2. Though the diagram does not indicate
it, we assume that they are linked maps X1 and X2. (b) We truncate the maps to
half-planes and attach at the boundary (at the top) to make R2#P 2#P 2. (c) Then we
unfold the R2#P 2#P 2. If the unfolding avoids self-intersection then the P 2 remain
linked.

Finally, if we fiber the linked pair of P 2 over a circle, that is, rotate the map in the φ direction, the result
is a linked pair R3#(S1 × P 2)#(S1 × P 2).

We can also link three times: R3#(S1 × P 2)#(S1 × P 2)#(S1 × P 2), as we see in Figure 21.

If we have a pair of topologies represented by the linked pair R3#(S1 × P 2)n#(S1 × P 2)n so that the
quarks have opposite charge (and same generation n), the pair can annihilate. For a link of three,
R3#(S1 × P 2)#(S1 × P 2)#(S1 × P 2), annihilation of any pair is impossible because the annihilation
would pass through an intersection with the third quark.
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(a) (b)

Figure 21: (a) An individual R3#(S1 × P 2) is represented so that the φ slice shows
a R2#P 2. (b) R3#(S1 ×P 2)#(S1 ×P 2)#(S1 ×P 2) is represented so that the φ slice
shows a R2#P 2#P 2#P 2. The diagram does not show the 5-dimensional embedding
geometry of the R3#(S1 × P 2) or the 4-dimensional embedding geometry of the φ
slice. Therefore it is not possible to distinguish from the diagram whether the knots
are linked, but if they are linked then they are quarks.

6.8 Charge

We noted at the end of Section 6.5 that, during the creation of fermions, an A0
,ν field develops, and this

field is preserved on one or both of the resulting fermions. If a fermion has a charge, then surrounding
the charge we must have a non-zero divergence of the electric field [42]. We see this in Figure 22, which
shows the knot R3#(S1×P 2). Figure 22(a) shows the “top view” of R3#(S1×P 2). In this diagram the
plane is a slice with coordinates x1 and x2 as shown. The orange circle represents the torus X(1, σ, φ)
(where X is the map associated with R3#(S1×P 2)). The torus has zero volume. A line in Figure 22(a)
passes through the knot at two points, seen as vertical orange lines in Figure 22(b).

The second diagram has axes x0 and x1. We plot curves of constant A0. We see from Figure 18 that the
gradient A0

,ν comes to a cusp on X(1, σ, φ), and we represent this cusp at the vertical lines in Figure 22.

The field cusp has curvature that, by itself, would violate the constraint R̂µν = 0. The geometry of the
knot R3#(S1 × P 2) has a corresponding opposite curvature at the cusp that compensates for the field
curvature and restores R̂µν = 0. Because of this relation between the field and the particle geometry,
the charge is geometrically stuck on the particle unless there is an interaction with another particle [43].

(a) (b)

Figure 22: (a) We see a “top view” of a R3#(S1 × P 2) with coordinates x1 and
x2 as shown. The orange circle represents the torus X(1, σ, φ) where X is the map
associated with R3#(S1 × P 2). Relative to the map X, the slice is at an angle of
constant σ, and the angle φ is shown. (b) We take a slice through R3#(S1 × P 2) at
x2 = 0, and we then show that slice in x0 and x1 coordinates. The purple curves are
sets of constant A0. The gradient of those lines is the electric field A0

,ν .

In the case of quarks, the relationship between field curvature and geometric curvature is complicated
by the fact that there are multiple R3#(S1 × P 2) whose various curvatures interact with each other. In
this paper, we simply assume that quarks have charges of ±1/3 or ±2/3 and that particles have integer
charge. See Section E in the Appendix for discussion.
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6.9 Weak Decay

As we discussed in the previous section, a charged particle has both a field cusp and a corresponding
geometric cusp. The constraint R̂µν = 0 implies the field cusp cannot be moved off the knot without also
moving the geometric cusp. The geometric cusp can only exist on a knot with the topology R3#(S1×P 2).
Therefore, removing the charge from a knot R3#(S1×P 2) requires interaction with another knot of form
R3#(S1 × P 2). This is a weak interaction.

We describe, for example, the weak decay of a neutron. A down quark with charge −1/3 decays to an
up quark with charge +2/3, and in the process an electron and an electron antineutrino are created.
As the down quark becomes an up quark, the charge changes by +1, implying a change in the field
and geometry. Conservation of charge requires a corresponding change of charge −1 nearby, and this
is accomplished by pair creation, specifically, by the creation of an electron and an antineutrino. We
saw in Section 6.5 how a pair of R3#(S1 × P 2) can be created if there is a strong electric field between
them, implying they have different charge. The combination of electric field and geometric curvature
that create the pair we call a W boson.

6.10 Generation Change

The topology R3#(S1 ×P 2)n is distinct for every n ≥ 0. Each value of n corresponds to one generation
of elementary fermions. For any m 6= n (with m ≥ 0 and n ≥ 0) the embeddings R3#(S1 × P 2)m and
R3#(S1 × P 2)n are distinct; there is no way to continuously change one into the other without self-
intersection. We can, however, construct an embedding that satisfies R̂µν = 0 and makes a transition
from m to n, so that the physics will represent a transition from a particle in one generation to a particle
another. The transition is represented by the sequence of maps:

Xm(τ, σ, φ) =
( τ

1− τ
, σ, φ, τ sin(2σ +mφ), τ cos(2σ +mφ)

)
(20a)

Xm∗(τ, σ, φ) =
( τ

1− τ
, σ, φ, τ | sin(φ/2)| sin(2σ +mφ), τ | sin(φ/2)| cos(2σ +mφ)

)
(20b)

Xn∗(τ, σ, φ) =
( τ

1− τ
, σ, φ, τ | sin(φ/2)| sin(2σ + nφ), τ | sin(φ/2)| cos(2σ + nφ)

)
(20c)

Xn(τ, σ, φ) =
( τ

1− τ
, σ, φ, τ sin(2σ + nφ), τ cos(2σ + nφ)

)
. (20d)

The sequence of maps is shown in Figure 23. We suppress σ (σ = constant) and show τ and φ, while the
thickness of the ring is a representation of the magnitude of displacement in the x4 and x5 coordinates.
First, we make a continuous transition from the map in Equation (20a) to that in Equation (20b). In the
second diagram of the figure, representing Equation (20b), the thickness of the ring goes to zero at φ = 0
because of the scaling factor | sin(φ/2)| = 0. The geometry can rotate in the σ angle, and the σ rotation
on opposite sides of φ = 0 can be independent. This allows the R3#(S1 × P 2)n to untwist or twist
around the contraction at φ = 0. We make a continuous transition to the third diagram, representing
Equation (20c). Finally, we make a continuous transition from the map in Equation (20c) to that in
Equation (20d). In this way, a R3#(S1 × P 2)m can make transition to a R3#(S1 × P 2)n.

If there is a slice in which the P 2 contracts to a point, we call this process a P-contraction and call the
topology R3#(S1 × P 2)∗. If the R3#(S1 × P 2) is charged and unlinked then it cannot P-contract. The
geometric curvature cannot compensate for field curvature at the P-contraction, and it therefore would
not satisfy R̂µν = 0 at the P-contraction. This prevents a spontaneous transition from an muon to an
electron, for example. See Sections D and F in the Appendix for details. Uncharged knots R3#(S1×P 2)
can P-contract, and this provides a mechanism by which neutrinos may change from one generation to
another.

In the case of a quark, if the knot R3#(S1 × P 2) is charged and linked, then it cannot P-contract for
two reasons: the charge is an obstruction at the P-contraction, and the P-contraction itself would pass
through intersection with the other quarks. Nevertheless a weak decay of a quark involving a generation
change may occur as long as all the linked quarks are involved. For weak interaction involving quark
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(a) (b) (c) (d)

Figure 23: In these diagrams we see the “top view” of a transition from a R3#(S1×
P 2)m to a R3#(S1×P 2)n. Each diagram matches the corresponding map of eqns. (20).
The thickness of the orange circle indicates the magnitude of extension into the x4 and
x5 dimensions. We take a 2-dimensional slice through the R3#(S1×P 2), and the angle
φ is shown. (a) We see a knot R3#(S1×P 2)m, with the arrow indicating the number
of twists with respect to φ. (b) We contract the geometry by a factor of | sin(φ/2)|.
At φ = 0 we have | sin(φ/2)| = 0. This allows the knot to rotate independently around
the point of contraction where φ = 0. (c) The knot has rotated around the point of
contraction until the number of twists has changed from m to n. (d) We expand the
point of contraction back, and there are n twists.

generation change, the quark must pass through an uncharged state by production of particles that
conserve charge. Because the product particle’s total charge must be an integer, the quark must change
charge by an integer amount. Therefore quark decay converts between up-type and down-type. It also
creates a W boson, conserving charge. In the intermediate state where the quark is uncharged, it can
convert to an R3#(S1 × P 2)n of different generation n. To avoid intersection with the other quarks,
all of the quarks must P-contract in the same φ slice so that they are all R3#(S1 × P 2)∗ and are all
P-contracted at the same point. At that point, the fields of the quarks and the W boson add to zero in
order to maintain Ricci flatness.

For example, consider the decay of Λ0 to a proton, an electron, and an electron antineutrino, that is, the
decay of a strange quark to an up quark, an electron, and its antineutrino. To change generations, the
strange quark must P-contract. To prevent intersection, the other quarks in the Λ0 must also P-contract
at the same location. To maintain the constraint R̂µν = 0 at the P-contraction, there must be some
combination of field and geometric curvature that compensates for the field and geometry of the quarks.
That combination of field and geometric curvature is a W boson, which results in the production of an
electron/antineutrino pair.

6.11 Particle Properties

6.11.1 Neutrinos

An uncharged unlinked knot R3#(S1 × P 2) is a neutrino. Since it has no charge, the embedding
R3#(S1 × P 2)m may freely change generation m to any n, for n ≥ 0. Only three generations, however,
have been observed. See Section G in the Appendix for discussion.

6.11.2 Charged Leptons

A charged unlinked R3#(S1 × P 2) is a charged lepton. Only three generations of charged leptons have
been observed. Further exploration of the theory may show that generations with n > 2 are not seen
because of energy and stability or are disallowed for other reasons.

The charged leptons have the interesting property that they appear pointlike in collisions. In this theory
a fermion is a knot of finite size. In Section H in the Appendix we discuss the size of the knot. As a
charged lepton approaches another lepton, the radius of the charged lepton decreases. See Section H in
the Appendix for details.
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6.11.3 Quarks

A charged linked R3#(S1 × P 2) is a quark. It remains to be shown that linked R3#(S1 × P 2) must
have charges of ±1/3 or ±2/3. Only three generations of quark have been observed. Again, further
exploration of the theory may show that generations with n > 2 are not seen because of energy and
stability or are disallowed for other reasons.

In the previous section we described how interaction of charged leptons with other particles makes them
appear pointlike in collisions. By comparison, the size of quarks is influenced by other particles to a
lesser degree than charged leptons. Quarks are linked to each other, and their proximity to each other
requires relativistic motion and electromagnetic fields to maintain the constraint R̂µν = 0. Interaction
with another particle has a relatively smaller effect on quark geometry.

(S1 × P 2)0 (S1 × P 2)1 (S1 × P 2)2

Uncharged νe νµ ντ
Charged e µ τ

Linked, charged 2/3 u c t
Linked, charged 1/3 d s b

Table 1: The elementary fermions

7 Quantum mechanics

7.1 Overview of Branch Interaction

The probability that an event occurs is determined by the branches corresponding to that event, and,
in turn, this depends on the interaction between manifold branches. This interaction produces the
interference that is familiar in quantum mechanics [44–46].

We use the terms “particle” and “knot.” An electron, for example, is a particle. A knot is the topological
description of a structure on a branch. In these terms, one real particle is represented by a knot on every
branch, and one virtual particle is represented by a knot on some of the branches. This is illustrated in
Figure 24.

(a) (b) (c)

Figure 24: The three diagrams show the branched manifold Y decomposed into
constituent branches B1 and B2. The real particles on Y have one knot on both B1

and B2. The virtual particles on Y have one knot on some of the branches (in this
case, B2).

For almost all of this section 7 we will describe the mathematics involved with one real particle. We
describe the geometry of the knot with a complex amplitude. When branches recombine, the knots
recombine according to a weighted average of their amplitudes. It would be intractable to keep track of
all the individual branches and knots in a calculation. Instead we will approximate the particle geometry
for all of the branches by developing dynamics on the unbranched manifold ΦM , introduced in Section 5.2.
Then we will show that the branch interactions can be described using a path integral on ΦM , equivalent
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to the path integral of quantum mechanics [22, 47, 48].

When two branches recombine, they must be topologically consistent, so that knots on one branch
correspond to knots on the other branch. Furthermore, they must be geometrically consistent. Since
the knots on the recombining branches may have different geometries, the recombination forces them to
match, leading to particle interference.

In Figure 1, the branched manifold Y has two branches B1 and B2. A single particle is represented by
two knots, and the knot on B1 takes a different path than the knot on B2. The geometric characteristics
of the knot on B1 develop differently from those of the knot on B2. When the branches recombine, the
knots on each of the branches recombine to a knot with geometry that is determined by the geometry of
the knots on B1 and B2. To understand how knot geometry is affected by recombination, we begin by
describing the geometric characteristics of R3#(S1 × P 2) that correspond to quantum amplitude.

7.2 Particle Geometry and Quantum Amplitude

In Equation (15) we described knot geometry as

X(τ, σ, φ) =
( τ

1− τ
, σ, φ, τ sin(2σ), τ cos(2σ)

)
.

We note that the magnitude and orientation (phase angle) of the map relative to the x4 and x5 coordinates
can be chosen arbitrarily. Thus we may characterize a knot geometry [49] by a single complex amplitude
a = ξeiθ, and write the map X(a) or

X(a; τ, σ, φ) =
( τ

1− τ
, σ, φ, ξτ sin(2σ + θ), ξτ cos(2σ + θ)

)
. (21)

Branch weight w = (−det(g))1/2 also plays a role in quantum amplitude, but we must be careful as
to how we include it. First we note that weight is a function of position w(x), and we may denote the
weight on branch B1 as

w1(x) = k1w0(x), (22)

where
lim
x→∞

w0(x) = 1 (23)

and k1 is the weight coefficient. The standard weight w0(x) is thus defined at all points on the manifold
and depends on the geometry of the knots; it is merely rescaled from the original weight w(x). At any
point x the weight coefficient on any branch Bj is given by kj = wj(x)/w0(x). We note that a branch
with weight coefficient k could branch k times into branches with standard weight w0. In this sense, a
branch with weight coefficient k is equivalent to k copies of the same branch. This consideration justifies
the name “weight coefficient.”

Suppose two branches B1 and B2, each with a knot, recombine, so that the knots must also recombine.
We will assume the knots have maps X(a1) and X(a2) with weights w1 = k1w0 and w2 = k2w0. The
amplitude a3 of the recombined branch B3 is the weighted average of the amplitudes a1 and a2:

a3 =
k1a1 + k2a2

k1 + k2
. (24)

The map of the branch is X(a3). Branch weight is additive at recombination, and therefore the weight
coefficient is additive at recombination, so that k3 = k1 + k2, or in general

ksum =
∑
j

kj . (25)

See the discussion after Equation (5). We see this illustrated in Figure 25. If the branch B3 splits
again into separate branches B4 and B5, then the amplitudes of those branches retain the same weighted
average, (k4 + k5)−1(k4a4 + k5a5) = a3, and they retain the same total weight coefficient k4 + k5 = k3.

Branches maximize entropy by recombining frequently, which implies that branches stay close in order
to recombine (see Section 5.1). In order for branches to recombine, the branches must be topologically
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(a) (b)

Figure 25: (a) We show two blue dots indicating the amplitudes a1 and a2 of two
knots, X(a1) and X(a2), with weights w1 = k1w0 and w2 = k2w0. (b) If those two
knots recombine, they recombine to the weighted average X(a3) with a3 = (k1 +
k2)−1(k1a1 + k2a2), indicated by the dark blue dot.

consistent, and their geometries must be consistent as well. This means that the amplitudes of knots
must match before recombining, and this is more likely when the knot amplitudes are similar shortly
before recombination. Thus a collection of branches with recombining knots will tend to contain knots
of similar amplitudes aj . On the other hand, we expect knot amplitudes in a collection of branches
to diverge from the mean simply because of entropy. Over time we expect the knot amplitudes in
the branches to converge to a distribution that maximizes entropy. The weighted average of the knot
amplitudes is given by

ā =

∑
j kjaj∑
j kj

, (26)

and this value is preserved during branch recombination [50, 51]. We see this illustrated in Figure 26.
Likewise the sum of the weight coefficients

∑
j kj is preserved during branch recombination.

(a) (b)

Figure 26: (a) We show a distribution of the amplitudes of many knots. The weighted
average ā = (

∑
j kj)

−1 ∑
j kjaj is shown by the point. When pairs of knots recombine,

they recombine to their weighted averages. (b) After successive recombination and
branching, the relative entropic influences determine an equilibrium distribution. The
quantum amplitude is ψ =

∑
j kjaj = (

∑
j kj)ā. The total weight

∑
j kj and the

weighted average ā are preserved during recombination, and therefore the quantum
amplitude ψ is well-defined.

In writing a path integral, we will not keep track of all the branches and knots on M individually, but
we will model their dynamics using a function on the unbranched manifold ΦM . We define the quantum
amplitude ψ as a complex scalar function on ΦM . At any point x on ΦM , we will define Bj as the
collection of branches that have a knot near x. We define the quantum amplitude to be

ψ(x) =
∑
j

kjaj . (27)

With ψ so defined, we see that we may rewrite ψ as

ψ = (
∑
j

kj)ā (28)

using Equation (26). Where two branches of M recombine, both
∑
j kj and ā are preserved by the

recombination, and therefore ψ is well-defined at the corresponding location on ΦM . We distinguish
between an amplitude a of a single knot on M and a quantum amplitude ψ of a collection of knots.

We note that the quantum amplitude ψ is additive in the following way: If there are multiple disjoint
collections of branches Cm each with its own quantum amplitude ψm, then the quantum amplitude of
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the union of those collections is the sum of the quantum amplitudes of the collections, so we have

ψ =
∑
m

ψm. (29)

The derivation is straightforward. See Section H.1 in the Appendix for details.

(a) (b) (c)

Figure 27: (a) We show the amplitudes of multiple collections Cm of knots. Each col-
lection individually may or may not be in equilibrium. The black point is the weighted
average of all the knot amplitudes in all the collections. (b) If those collections Cm
begin to recombine they form knots with amplitudes that are weighted averages of
knots in Cm. (c) The recombining knots converge to an equilibrium distribution with
the same weighted average amplitude. The quantum amplitude in all three diagrams
is ψ =

∑
m ψm.

In Figure 27 we see an illustration of how this recombination occurs. In Figure 27(a) we see the original
distribution of amplitudes for the three collections of branches Cm. Pairs of branches from all of the Cm
recombine to their weighted average amplitudes, illustrated in Figure 27(b). The distribution of branches
converges to a final equilibrium distribution, illustrated in Figure 27(c). Here the weighted average
amplitude of the final equilibrium distribution is the weighted average amplitude of the branches of the
collections Cm, written ā = (

∑
j kj)

−1
∑
j kjaj . Its quantum amplitude is the sum of the amplitudes of

the collections, ψ =
∑
m ψm.

7.3 Phase

The discussion of knot amplitude has not yet included time x0 or t. We allow the amplitude a to be a
function of t, so that we have a(t) = ξ(t)eiθ(t), and we have

X(a(t); t, τ, σ, φ) =
( τ

1− τ
, σ, φ, ξ(t)τ sin(2σ + θ(t)), ξ(t)τ cos(2σ + θ(t))

)
. (30)

To determine how the knot’s phase angle changes with time, we return to the description of dynamics on
M . Near a knot, fields reduce the entropy of the manifold relative to the vacuum. If the knot is rotating
in x4 and x5, then this rotation introduces a factor 1/γ into dΦM in the Lagrangian of Equation (11).
Knots rotate in the co-dimension with angular frequency ω because this reduces the impact of the fields
in reducing the entropy. Thus we have

X(t, τ, σ, φ) =
( τ

1− τ
, σ, φ, τ sin(2σ + ωt), τ cos(2σ + ωt)

)
. (31)

The angle advances at a rate ω that maximizes entropy. If E is the energy of the particle, we will show
here that E is proportional to ω.

As the branches of the manifold M recombine, two effects govern the maximization of entropy. On the
one hand, frequent recombination of branches increases entropy, as we saw in Section 5.1. On the other
hand, entropy increases as the positions and momenta of the branches fill up phase space. In this case,
the cohesion effect of recombination reduces the phase space they take up and reduces the entropy. On
the one hand, the branches cohere, on the other, they diffuse.
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When making a measurement with a real device, we often register a number of quantum states. In this
theory we describe that as including a number of branches, all of which contribute to the result. For
example, we could imagine a device that measures a particle’s location in phase space. If the measurement
device has accuracy σx in position and σp in momentum, then the best measurement we could hope for
has σxσp = ~/2. We hypothesize that this limit is the result of multiple branches contributing to the
measurement as a consequence of branch cohesion. We therefore interpret this limit as the amount of
cohesion between branches. See Section A in the Appendix for details.

Energy and time have a relationship that is analogous to position and momentum. We cannot, however,
write σEσt = ~/2 in the same way as σxσp = ~/2 because t does not correspond to an operator. We
can, however, consider an observable A with expectation value 〈A〉 and standard deviation σA. If E is
the energy of a system, then we have

σA

(∣∣∣d 〈A〉
dt

∣∣∣)−1

σE =
~
2

(32)

for a best possible measurement. We consider a number of branches. We will call E the energy of a knot
on each branch and call A the phase angle θ of the knot. Then we have ω = d〈θ〉/dt. The knots have a
maximally entropic distribution of energies given by [52]

P (E) = λe−λE (33)

for some λ determined by the knot topology, field potentials, and other details. We calculate the average
energy 〈E〉 = λ−1 and standard deviation σE = λ−1. Therefore we have σE = 〈E〉. Then we have

σθ

(d 〈θ〉
dt

)−1

σE =
~
2

(34a)

σθ ω
−1 〈E〉 =

~
2

(34b)

〈E〉 =
~ω
2σθ

. (34c)

We see that the expected value of energy 〈E〉 is proportional to the angular frequency ω. If the standard
deviation of angle is σθ = 1/2 then we have the familiar relation 〈E〉 = ~ω, but deriving σθ = 1/2 from
the statistics of branch recombination remains to be shown in a future work. Thus we have derived how
the phase angle θ(t) of the amplitude a(t) = ξ(t)eiθ(t) changes with time.

7.4 Probability

In this section we calculate the probability associated with particle position using a simplified model
of branch recombination. For example, in Figure 28(a) we see a branched manifold with two branches
and the paths of a particle on the manifold. We may want to know, for example, the probability of
measuring a particle at point q rather than at point r on manifold ΦM , shown in blue in Figure 28(b).
In general, the manifold may have many branches and the particle knots may follow many paths. In
that case, to obtain the probability of finding the particle at q we use a number of spacelike slices, each
slice containing a large number J of points. Between the J points on one slice and the J points on the
next slice there are J2 discrete paths that a knot may take. This is illustrated in Figure 28(c), which
shows ΦM with the knot paths in black and points of recombination in green.

Figure 28(c) shows such a model in which J is three and the number of spacelike slices is three. Figure 29
shows a particular location at which the paths recombine. If we were to make a measurement of the
location of the particle, the probability that we would find the particle at that location is determined by
the branches that contain the knot at that location. The probability is proportional to the number of
branches with knots coming into the location times the number of branches with knots going out. If each
path had just one knot on it, then this would be J2; however, each path may have multiple branches
associated with it, each with a knot on that path.

In Figure 29 we show the point of knot recombination. Figure 30(a) shows blue lines representing the
branches that have a knot. Those branches recombine at the green rectangle. By the rules of branch
recombination, any incoming branch can be paired to an outgoing branch in a valid combination. For
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(a) (b) (c)

Figure 28: (a) We show a simple branched manifold on which one particle takes two
different paths on different branches. We use ΦM to model the particles of M . (b) The
description includes the probability of measuring a particle at particular locations, for
example, at points q and r. (c) We restrict the knots to following discrete paths that
only recombine at discrete locations then model those paths on ΦM .

Figure 29: We magnify one of the possible knot recombination locations shown in
Figure 28(c). The probability of measuring the knot at that location is determined by
the branches that have a knot at that location.

example, Figure 30(b) shows a particular pairing. The number of branches is equal to the number of valid
combinations, which is the number of incoming branches times the number of outgoing branches. This
format does not have a ready way of expressing the number of branches in all of the incoming paths,
and this number is not conserved in recombination. In Section 7.2, however, we defined the weight
coefficient of a branch Bj as kj = wj/w0. We noted that such a branch could divide into kj branches of
standard weight w0. For this reason we can say that the number of branches coming into the location
is proportional to the sum of their weight coefficients

∑
j kj . Furthermore, this expression is preserved

during recombination and separation, and the total number of branch pairings is proportional to the
sum squared. Therefore the probability is P ∝ (

∑
j kj)

2.

The probability of measuring a particle at a location is determined not just by the number of branches
with the corresponding knot but also by the amount of state space available for the knot at recombination.
This is to say that the probability is greater if the amount of “area” in the x4 and x5 coordinates
occupied by knot amplitudes is larger. (The reason for quotation marks about the word “area” will soon
be apparent.) In Figure 31 we see two different equilibrium distributions of knots. Each knot in the
equilibrium distribution has a complex amplitude that moves freely within the equilibrium distribution.
The size of the equilibrium distribution in state space therefore determines the size of the state space for
each of the knots, and the probability is proportional to the size of the state space.

To calculate the size of the state space, we use the standard deviations σθ and σξ. In the previous section
we assumed that σθ is constant. We can calculate σξ here using the time uncertainty relation:

σξ

(d 〈ξ〉
dt

)−1

σE =
~
2
. (35)

For an equilibrium distribution, the expectation value 〈ξ〉 is constant, and we have d〈ξ〉/dt=0. Therefore
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(a) (b)

Figure 30: In Figure 29, we depicted a green rectangle where knots recombine, as well
as the knot paths that lead into and out of it. (a) We show the branches, in blue, that
lead into and out of the recombination. The total number of possibilities P includes
all choices of branches in and branches out. (b) We show an example of one such pair.
The number of branches is proportional to

∑
j kj , and therefore P ∝ (

∑
j kj)

2.

(a) (b)

Figure 31: The diagrams show the state space for two different equilibrium dis-
tributions of knots. (a) The diagrams have ξ1 = |ā1|, and (b) the diagrams have
ξ2 = |ā2|. The size of the green rectangle indicates the size of the state space for knot
amplitudes of both incoming and outgoing branches. For both incoming and outgoing
branches, the size of the state space is proportional to |ā|. Therefore the probability
is proportional to the size of the total state space, P ∝ |ā|2.
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we have σξσE = 0 and σξ = 0. The equilibrium distribution converges to having no dispersion of the
magnitude ξ = |a| of its knots. The equilibrium distribution of branches in state space is an arc in which
the magnitude spread ∆ξ is infinitesimally small, and the angle spread is |a|∆θ = ξ∆θ. In Figure 31
we see the state space for equilibrium distributions with two different magnitudes. In the bottom half
of Figure 31 we see a simplified diagram showing the branches coming into the recombination and the
branches exiting from it. The width of the green bar indicates the size of the equilibrium distribution
(corresponding to ξ∆θ). We note that branches coming in to the recombination can have any amplitude
within the range of the equilibrium distribution, and branches exiting the recombination can likewise
have any amplitude within the range of the equilibrium distribution, with no correlation to the amplitude
before recombination. The size of the state space is the range of possibilities for the knot amplitudes,
which is the product of the range before recombination times the range after recombination. Therefore
the size of the state space is P ∝ (ξ∆θ)2. The magnitude of the weighted average amplitude |ā| is less
than the magnitude of the amplitudes that constitute the equilibrium |a|, as we see in Figure 32. Since
∆θ is constant, we still have P ∝ |ā|2.

(a) (b)

Figure 32: (a) We show an equilibrium distribution with knot magnitudes ξ = |a|.
Note the infinitesimal spread ∆ξ. (b) We show that the weighted average amplitude
ā has slightly smaller magnitude, |ā| < |a|. Since ∆θ is the same for every equilibrium
distribution, we still have |ā| ∝ |a|.

There are two different contributions to the probability of an event, P ∝ (
∑
j kj)

2 and P ∝ |ā|2.
Combining the two, we have the familiar relation between probability and quantum amplitude ψ,

P ∝ (
∑
j

kj)
2|ā|2 =

∣∣∣(∑
j

kj)ā
∣∣∣2

P ∝ |ψ|2. (36)

7.5 Path Integral

As we mentioned earlier, it would be intractable to keep track of all the individual branches and knots in
a calculation. In this section we will demonstrate some steps in deriving an approximation for a transition
amplitude between states on M . This approximation involves a path integral on the unbranched manifold
ΦM . Knots on M can interfere only if they can recombine. Knots can recombine only if they have the
same topology, and this implies that they represent the same type of particle. Including multiple particles
allows for the possibility of pair annihilation, pair creation, and virtual particle pairs. We showed in
Section 6.5 that the constraint R̂µν = 0 allows for pair creation and annihilation. The rate of production
of virtual particle pairs is determined by entropy maximization. The particles we have described so far
have all been elementary fermions, which have topology R3#(S1×P 2). We will describe the elementary
bosons in the next section, Section 8. Every branch can be classified by the interaction of knots on
that branch and is represented by a Feynman diagram. In this theory, the transition amplitude is
determined by summing amplitudes over all the branches, which is equivalent to summing over histories,
or performing a path integral [53, 54].

The manifold M has many interacting branches. Our goal is to make calculations tractable by finding
a continuous approximation that describes the interaction of the discrete branches. In Section 7.2 we
introduced amplitude ψ =

∑
j kjaj for a single particle on ΦM , a quantity that has the properties of

quantum amplitude. In particular, the probability of making a measurement and discovering a particle
at a particular location is |ψ|2.
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The phase of the knots changes as a function of time and of the knot’s path. Let D(∆t) be the operator
that advances the phase of the knot during time ∆t. If qi is a position, we will call |qi〉 an eigenfunction
in position space such that q|qi〉 = qi|qi〉, where q is the position operator. The amplitude of a transition
from qi to qj is 〈qj |D(∆t)|qi〉. A change of basis yields that the amplitude of a transition from a state
|φi〉 to |φj〉 is 〈φj |D(∆t)|φi〉. If we consider two states |χ〉 and |φ〉 separated in time by T , then we can
represent the amplitude of a transition by a path integral. We divide the time interval T into N spacelike
slices. Then we have

〈χ|D(T )|φ〉 = 〈χ|D(T/N)...D(T/N)|φ〉. (37)

We may insert 1 =
∫

dqj |qj〉〈qj | into this expression, thus allowing the particle to take any path:

〈χ|D(T )|φ〉 =
(∏

j

∫
dqj

)
〈χ|D(T/N)|qN−1〉...〈q1|D(T/N)|φ〉. (38)

In Equation (34) we derived 〈E〉 ∝ ω, which we assume to be 〈E〉 = ~ω. With the hint that 〈E〉 = ~ω,
we might guess that H = ~dΘ/dt, where H is the Hamiltonian and Θ is the operator yielding the phase
angle. In this case, the operator that advances the quantum phase is D(∆t) = e−iH∆t/~. We have the
equation

〈χ|e−iHT/~|φ〉 =
(∏

j

∫
dqj

)
〈χ|e−iHT/(N~)|qN−1〉...〈q1|e−iHT/(N~)|φ〉 (39)

where

H = ~
dΘ

dt
. (40)

As N goes to infinity, we obtain the path integral for one particle on the right. Some extra formalism is
needed to include multiple particles and virtual particles. This produces an expression analogous to the
path integral of quantum mechanics.

In Section 7 we have demonstrated how the assumptions of this theory, with its knots and multiple
branches, produce the path integral of quantum mechanics as an approximation.

8 Interactions

The dynamics of the branched manifold M results from maximization of entropy [55]. In Section 5
we showed how entropy maximization can be modeled on an unbranched manifold ΦM with an action
S[ΦM ] =

∫
ΦM

w((1/2)FµνFµν −R) dΦM . We claimed in Section 5.4 that Aν is the 6-dimensional analog
of the electromagnetic potential with electromagnetic field tensor Fµν = Aν,µ −Aµ,ν . In this section we
will justify this claim. We show how the R term generates the gravitational interaction. Likewise, we will
show how particle geometry interacts with the Lagrangian to produce the strong force and electroweak
unification.

8.1 Electromagnetism

The Lagrangian has the term (1/2)wFµνFµν and higher order terms, although we will consider only the
first term. In Section 5.4 we related the maximization of (1/2)wFµνFµν to the maximization of the en-
tropy in the Aν field. The Aν field has entropy in its random field fluctuations, and those field fluctuations
are virtual photons. If the branch weight w is constant, then the term is proportional to (1/2)FµνFµν .
This Lagrangian is the same as that which leads to classical electromagnetism. Electromagnetism is
therefore a consequence of maximizing the entropy in virtual photons [56].

Real photons demonstrate interference as well as quantization. Interference is a natural consequence of
the Lagrangian term proportional to (1/2)FµνFµν , but it remains to be shown how field solutions can
be quantized. The Lagrangian term is (1/2)wFµνFµν with Fµν = Aν,µ − Aµ,ν and w = (− det(g))−1/2,

while gµν = ρ2Aα,µA
α
,ν is constrained by R̂µν = 0. We propose that such a nonlinear equation has

solutions that are solitons of finite effective width, and these solitons represent real photons [57, 58]. In
that case, a plane wave could decompose into photons such that the photons have different locations on
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the branches of M . Summing the photons over the branches would re-create the initial plane wave. The
measured location of a photon would be a probabilistic result of the interaction of the branches.

Far from knots, a small region of the manifold is approximately flat like R4, and the Lagrangian
(1/2)FµνFµν is a good approximation of electromagnetism. In that case we will use a coordinate frame
such that the two dimensions x4 and x5 are perpendicular to M everywhere in the region we are consid-
ering. A rotation of the coordinates x4 and x5 does not affect the physics in that region. Such a gauge
transformation, represented by SO(2) or U(1), leaves the manifold and electromagnetic field unchanged.
We are familiar with this gauge group from classical electromagnetism.

8.2 Electroweak

If a knot, representing a fermion, is moving on the manifold M , then near the knot the velocity vector
does not lie in the tangent space of the manifold. This is because the knot itself is not flat, like R4. In
Figure 12 we see a rough representation of the knot with its velocity in the x1 direction, and the velocity
vector points in a direction that is not in the tangent space. If the knot is charged, then there is energy
in the field. In Section 5.5 we saw that a Lorentz transformation perpendicular to the manifold implies
expressions for energy and momentum that transform like a four-vector, implying a finite rest mass in
the rest frame of the particle. In this case the velocity of the knot has a component perpendicular to the
manifold, so the energy in the field is part of the rest energy of the knot.

So a charged particle is the source of field Fµν , and, from the analysis above, the transformation of the
field yields a part of the rest energy. The scalar curvature term in the Lagrangian (Equation (11)) also
contributes to the rest energy. Any fermion is represented by a knot with a particular topology, implying
a geometry and a curvature in the manifold. A disturbance of the geometry and curvature of a knot
will affect the Higgs field. In particular, if a particle collides with another particle, the geometry around
the first particle may vibrate without energy loss. We propose that such a vibration represents a virtual
Higgs boson. If the vibration separates from the particle as a transverse wave on spacetime, it will decay
to other particles. Such a vibration is a real Higgs boson.

The description of weak decay in Section 6.9 showed that the W boson is a combination of the Aν field
and geometry. The Z boson, by contrast, is a purely geometric effect. Elastic collision of a neutrino
with another elementary particle causes a deformation of the particle geometry. The restoring force
returns the particle to its initial shape and results in a transfer of momentum. We call that interaction
an exchange of a virtual Z boson. We see that the W and Z bosons both have geometry, and therefore
they have have mass because there are points on the bosons where their tangent space is not parallel
to flat space. The geometry of the bosons has finite effective length. Therefore the effective length of
the massive boson field is also finite. By contrast, in Section 8.1 we discussed photons, which occur on
regions of the manifold that are flat.

In electromagnetism the manifold M is flat (like R4), the tangent space is constant, and we derived the
gauge group SO(2) ∼= U(1), as we saw in Section 8.1. If a particle is present, the knot introduces a certain
topology and geometry and also non-constant tangent space, and yet we can find symmetries, or gauge
groups, that leave the physics unchanged. To that end we can find some components of the tangent
space of M that are unaffected by rotations in x4 and x5, as in our discussion of electromagnetism.
These components are represented by the left-pointing arrow in Figure 33. Such a U(1) transformation
in x4 and x5 leaves the corresponding projection of Fµν unchanged. We can find other components of
the tangent space of M that are perpendicular to x1, x2, and x3. These components are represented by
the arrow pointing vertically in Figure 33. The projection of Fµν onto the x4x5 plane is left unchanged
by SO(3) on x1x2x3, but the manifold is non-orientable, so we use the appropriate gauge group SU(2).
Thus we have the gauge group U(1)× SU(2).

Far from particles the spacetime manifold is flat, the Fµν field is massless, and the gauge group is U(1).
Close to particles the spacetime manifold is not flat, the Fµν field may have mass, and the gauge group
is U(1)× SU(2). This matches the electroweak unification [59–61].
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Figure 33: We take a slice through a knot. Vectors tangent to the manifold are
represented by arrows. Far from the knot, the tangent vectors are in the span of x1,
x2, and x3. Rotation of the coordinates x4 and x5 has no effect on the manifold.
Close to the knot, the manifold is not flat. We decompose the tangent vectors into
components that are perpendicular to flat space and components that are parallel to
flat space. The components that are perpendicular to flat space are unaffected by
rotation of x1, x2, and x3.

8.3 Strong

Quarks are linked knots R3#(S1×P 2) (Figure 21). Since a branch of the manifold cannot intersect itself,
the quarks are unable to unlink, and this results in quark confinement. When the quarks are sufficiently
close to each other, there is no mechanism by which they exert a force on each other, resulting in
asymptotic freedom. As the distance between two quarks increases, however, the knot is stretched, and
the R term in the Lagrangian produces a geometric interaction that increases the energy. We propose
that the geometric interaction is equivalent to the exchange of a gluon.

In order to derive a symmetry group for the strong force and to derive an analogy for the color charge, we
will consider three quarks making up a hadron and, in particular, the five spatial coordinates describing
the center of those quarks. Thus we will use the notation qjn, where n =1, 2, and 3 identifies the quark,
and j, 1 ≤ j ≤ 5, identifies the index of the 5-vector. We will choose an origin of coordinates to represent
the zero-momentum frame, so that

∑
n q

j
n = 0. The quarks are linked and cannot be separated. We

could create a model in which their position vectors have some maximum magnitude, which we will take
to be 1. We could write |qjn| ≤ 1 for each qn, that is, each quark must be within distance 1 of the center.
Alternatively, we could add a (non-physical) sixth coordinate q6

n to each position vector and require
|qjn| = 1 for each n. We now perform the map

(q1
n, q

2
n, q

3
n, q

4
n, q

5
n, q

6
n)→ (q1

n + iq2
n, q

3
n + iq4

n, q
5
n + iq6

n). (41)

The ordinate has complex coefficients, unit length, and zero sum, so that it is analogous to the color
charge. The transformation that preserves these properties is SU(3), so we expect SU(3) to be the gauge
transformation for three quarks that are near each other. Indeed if three quarks are near each other,
they do not exert a force on each other, and any change of coordinates that preserves the properties
in the previous paragraph will not affect the physics. Such a coordinate change will result in different
complex 3-vectors of unit length and zero sum of coordinates.

It may appear that we have ten degrees of freedom in choosing the coordinates of the quarks, five for each
of three quarks, minus five for the constraint

∑
n q

j
n = 0. Adding a sixth coordinate adds three degrees of

freedom, but the constraint
∑
n q

6
n = 0 removes one, that is, it sets one of the sixth coordinates. We have

three additional equations |qjn| = 1 for n = 1, 2, and 3. Two such equations constrain the other sixth
components, but the last equation must constrain one of the ten degrees of freedom with 1 ≤ j ≤ 5. Thus
there are nine degrees of freedom when determining the geometry near linked knots. This is in contrast
to the 8-dimensional group SU(3). More work needs to be done to show the relationship between knot
physics and the strong force, but this section shows how quark confinement, asymptotic freedom, and
SU(3) emerge from the elements of knot physics [62–76].
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Figure 34: The “top view” of three linked quarks is shown. Each quark is a different
color and the center point of each quark is indicated by a smaller circle of the same
color. The center of the particle is the black circle. The quark centers are displaced
from the particle center by 5-vectors qjn, where n labels the quark and j labels the
spatial coordinate.

8.4 Gravity

8.4.1 Classical Gravity

In Equation (11) we see that the Lagrangian contains the term −wR, which is the same form as the
Lagrangian that generates general relativity. Hence we expect this theory to generate general relativity
in the classical limit [77, 78].

8.4.2 Geometry

We want to see how this term affects the geometry of the manifold. Matter and energy impose order on
the manifold and, in this sense, reduce entropy. If we denote by Lm the effect of matter and energy on
the Lagrangian, we may write the action as

S[ΦM ] =

∫
ΦM

w(Lm −R) dΦM . (42)

Here we include all the sources in the term Lm. If the branch weight w is constant, then we have the
Lagrangian of general relativity L = Lm −R.

To maximize entropy, a macroscopic region with matter and energy moves in the co-dimension. The
region rotates in the coordinates x4 and x5, and the rotation reduces its proper time, introducing the
factor 1/γ to dΦM . Reducing the proper time reduces the effect of matter and energy on the action
S[ΦM ]. In Section 7.3 we derived that a knot will rotate in dimensions x4 and x5. The gravitational
rotation is much larger than the quantum scale, so that it is not the rotation of individual branches
but rather the collective rotation of all the branches, as in Figure 35. In Figure 35 we see a spacelike
2-dimensional slice of M with a region of matter and energy. The entropy of the region is reduced by
an amount Lm by the introduction of matter. To reduce the effect of the matter and energy on the
Lagrangian, the region rotates in x4 and x5. In the diagram we take a slice, indicated by the dashed
line. In the diagram on the right, we see that slice of the manifold in the dimensions x1, x4, and x5. The
slice of the manifold extends into the dimensions x4 and x5, and it is rotating. Its rotation reduces the
proper time and therefore reduces the measure dΦM . In this way, the manifold maximizes entropy.

8.4.3 Dark Matter

The branch weight w determines the number of branches in a given region. Over small cosmological
distances branch density will tend to spread evenly as entropy maximizes. Thus w becomes approximately
constant.

The large-scale distribution, on the scale of galaxies, may not be uniform. These variations have a
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(a) (b)

Figure 35: (a) We show a spacelike 2-dimensional slice of M . There is a region with
matter and energy. The matter and energy reduce the entropy by an amount Lm.
The dashed line indicates a slice through the region. (b) We show that slice with its
extension into x4 and x5. The manifold rotates in the dimensions x4 and x5, and this
rotation reduces its proper time.

gravitational effect and are not propagated by a particle. In this way, the branch weight variations
appear to produce the properties of dark matter.

8.4.4 Rotation in the Co-dimension

In Figure 35 we see rotation of the spacetime manifold in the co-dimension. The rotation is of the form
(x0, x1, x2, x3) 7→ (x0, x1, x2, x3, b sin(kjx

j), b cos(kjx
j)) where j = 0, 1, 2, 3, and b is the amplitude. To

maximize entropy, the manifold rotates in the same direction everywhere. (For proof, see Section I in
the Appendix.)

9 Conclusion

In this paper we have described a theory in which physics takes place on a branched 4-dimensional
spacetime manifoldM embedded in a 6-dimensional Minkowski space Ω. The manifoldM has a conformal
weight ρ and a field Aν , from which we derive the metric gµν . The manifold M is constrained to be
Ricci flat with respect to gµν , and it observes several other constraints, but otherwise it randomizes and
assumes a shape that maximizes entropy. The assumption of entropy maximization allows us to write a
Lagrangian.

We represent fermions by topological knots R3#(S1 × P 2) on the manifold M . Depending on how the
knot is embedded in the 6-dimensional space Ω and depending on the properties of Aν on the knot, the
knot may represent various charged or uncharged leptons. Furthermore, if the knot is linked to other
knots, then it represents a quark. These knots assume the properties of the familiar particles.

The manifold M branches and recombines continually, and the knots on M branch and recombine as
well. This recombination leads to interference effects. Using an approximation of the theory, we have
shown that it reproduces the probabilistic results of quantum mechanics.

Near a knot, the geometry produces a gauge group SU(2) × U(1), exactly like the electroweak gauge
group. When we consider the properties of linked knots in a baryon, they produce the gauge group
SU(3), just like that for the strong force. The Lagrangian for the theory contains a term that matches
that for general relativity, so in a suitable regime the theory reproduces gravitation. These and other
clues indicate that in suitable regimes the theory reproduces the properties of the four forces, although
more work is needed.
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Appendix A Wave Function Collapse

This theory explains what happens when events on a quantum scale are magnified to a macroscopic scale.
When elementary quantum mechanics predicts a solution of the superposition of two or more states, the
state that is measured is determined by entropy.

Entropy is proportional to the rate of branch recombination. Branches can recombine only when they
have matching knots. If branches have knots that do not match, then they cannot recombine. Without
recombination the entropy is less. Entropy maximization therefore implies that branches will tend to
create states that are similar enough to allow recombination.

(a) (b) (c)

Figure A1: The branched manifold M is shown separated into two collections of
branches C1 and C2 that are in two different states S1 and S2 inside the dotted line. If
every intermediate state between S1 and S2 has low entropy then this prevents recom-
bination between C1 and C2 inside the dotted line. If C1 and C2 cannot recombine,
then this reduces the entropy from a case in which all the branches are in S1 or S2.
Eventually the collections C1 and C2 do collapse to one of the states S1 or S2, so
that they can resume recombination. In the diagram, C1 and C2 are in increasingly
divergent states S1 and S2 that later collapse to a single state.

Consider the example of a measurement of particle location such that the particle is equally likely to
be found in either of two potential wells. The measuring apparatus magnifies the effect of the state to
macroscopic level, and it indicates the location of the particle. In Figure A1 we see a depiction of this
process. Initially, one collection of branches C1 have the particle in potential well number 1, state S1,
and another collection of branches C2 have the particle in well 2, state S2. At the time of measurement,
there is an interaction with the particle in the well. The branches of C1 begin the magnifying process to
indicate the particle’s location in well 1, state S1, and the branches of C2 begin the process to indicate
well 2, state S2. Then C1 and C2 are in increasingly different states S1 and S2. The branches of C1

and C2 cannot recombine where their states are different. This implies a reduction of the entropy of
recombination. All of the intermediate states between S1 and S2 are at low entropy, and therefore
disfavored, but entropy increases as branches from S1 (or S2) pass through the intermediate states to S2

(or S1). Then C1 and C2 collapse to a single state, either S1 or S2. This happens on the quantum scale.
By the time the measurement has been magnified to macroscopic size, the state has already collapsed.

Appendix B Entropy of Scalar Curvature is S = −wR

The branched manifold M has entropy in its branching. Because of the constraint R̂µν = 0, increasing
the volume of the branches of M decreases the number of branches, as in Figure 4 and in the discussion
following Equation (6). The total weight w is conserved. The manifold M is centered around the
unbranched manifold ΦM . With fixed boundary, decreasing the volume of ΦM increases the number of
branches of M . In Figure 9 a branched 1-manifold C with fixed endpoints changes geometry to approach
the straight line connecting the endpoints. We can say that C is centered around an unbranched manifold
ΦC (not shown in the diagram) and that ΦC approaches the straight line. The number of possible
branches on C is maximized when ΦC is exactly equal to the straight line.
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If the number of states of M is P , then the entropy of M is

S = lnP. (43)

The number of states of M is linear in the number of branches, and we see in Figure 6 that the number
of branches increases as the amount of recombination increases.

On M there are many branches recombining. To determine the entropy in these recombinations, we
determine how the branches are involved in the recombinations. Directly calculating the number of
branches of M is intractable (see the third diagram of Figure 6). Instead, we will approximate the
number of branches in M by assuming that k branches recombine and separate repeatedly. If we have
just k branches recombining with each other over time ∆t, then the number of states is P ∝ kf∆t,
where f is the frequency of the recombinations. We see this by applying the branch counting technique
shown in Figure 6. We see in Figure A2 that the manifold has some total weight w. The total number
of branches in M is proportional to w. We can say that there are w/k recombinations happening in
parallel.

Figure A2: This is a cross-section of the branched manifold M . The total number
of branches of M is proportional to the total weight of all the branches of M . This
is equal to the weight w on ΦM (we define w on ΦM as the sum of the weights w on
the branches of M). Looking at a small piece of the cross section we see that there
are many branches recombining. Let k be the average number of branches in any
particular recombination. Then there are w/k recombinations happening in parallel.
Let the frequency of recombinations be f .

We include all the branches of M by including w/k interactions happening in parallel, each interaction
containing k branches, all happening with frequency f . Since each interaction has kf∆t possibilities, the
number of states is

P ∝ (kf∆t)w/k = kf∆t(w/k). (44)

Then the entropy over time ∆t is

S∆t = lnP ∝
(fw
k

)
∆t ln k. (45)

The numbers k and f are constant, and therefore we have S = lnP ∝ w. The result, that S ∝ w, does
not depend on any choice of k or f , nor does it depend on our model.

If we stretch the branched manifold M , then ΦM has a corresponding change in volume, V → V ′. The
constraint R̂µν = 0 implies ΦM has a change of weight w → w′ such that w′V ′ = wV . For a fixed
boundary on an infinitesimal ball, a small change in the scalar curvature R increases the volume by
V ′ ≈ V (1 +R). Then the weight is affected by w′V (1 +R) ≈ wV , which implies

w′ ≈ w/(1 +R). (46)

Therefore the entropy is related to scalar curvature by S ≈ w/(1 + R). Linearizing around R = 0 we
have S ≈ w − wR. Considering only the variation in R we have S ≈ −wR.
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Appendix C Ricci Flatness of R3#(S1 × P 2)

C.1 Flatness from a Lagrangian

In Section 6 we described a procedure for creating the knot R3#(S1 × P 2), and throughout the paper
we have introduced coordinates for the knot on M . In this section we will derive conditions on ρ that
will assure Ricci flatness, R̂µν = 0. In following sections, we will elaborate on features of the Ricci flat
geometry.

To find a Ricci flat vacuum, we can use the Einstein-Hilbert action

SEH =
1

16π

∫
M

d4x
√
−gR. (47)

This equation is familiar from general relativity. In the presence of matter and energy, we modify this
action with a corresponding additional term in the Lagrangian. To appropriately modify this action to
suit the topology R3#(S1 ×P 2), we treat the topological surgery as a manifold boundary ∂M and then
include a Gibbons-Hawking-York boundary term SGHY that accounts for that boundary [79–81]:

SEH + SGHY =
1

16π

∫
M

d4x
√
−gR+

1

8π

∫
∂M

d3yε
√
hK. (48)

In this equation, hab is the induced metric on the boundary,
√
h its determinant, K is the extrinsic

curvature, ε is equal to +1 where ∂M is timelike and −1 where ∂M is spacelike, and ya are the coordinates
on the boundary. Varying the action with respect to the metric gαβ , subject to the condition δgαβ

∣∣
∂M

= 0
gives the Einstein equations.

The surgery attaches antipodal points, therefore we constrain the Lagrangian such that the metric g
must be equal on opposite sides of the surgical attachment. In terms of the maps, this means that
g
(
X(1, σ, φ)

)
= g

(
X(1, σ + π, φ)

)
. The metric g is equal on both sides of the cross-cap surgery, which

implies that the boundary metric h is also equal on both sides. Because the surgery attaches antipodal
points to each other, the extrinsic curvature must be opposite on antipodal points,

K
(
X(1, σ, φ)

)
= −K

(
X(1, σ + π, φ)

)
. (49)

In the following sections we show how to use the conformal weight ρ and the embedding of the manifold
to achieve this constraint.

C.2 Flatness in Two Dimensions

We begin by finding Ricci flat solutions for R2#P 2, the 2-dimensional case. To make R2#P 2 we remove
a disk from a plane and set each point on the disk boundary identical to the point that is diametrically
opposite. Although the disk with the plane removed, R2 −D2, is flat, when we identify points to create
R2#P 2, it is no longer flat unless we meet certain conditions for ρ. We draw a circle on the manifold
around the P 2 as in Figure A3(a). We cut along the circle to produce a manifold with boundary, which
we call M2, as in Figure A3(b). Then we apply the Gauss-Bonnet theorem to M2:∫

M2

R̂dA+

∫
∂M2

kgds = 2πχ(M2). (50)

In this equation, the symbols are the conventional ones for this theorem. The geodesic curvature kg pro-
vides a measure of how much a curve deviates from a geodesic in a manifold, and the Euler characteristic
χ depends only on the topology of the manifold. We have R̂ = 0 on M2. The Euler characteristic of
P 2 is χ(P 2) = 1. The Euler characteristic of M2 (equivalent to P 2 −D2) is χ(M2) = 0. The geodesic
curvature kg = 0 at every radius. Zero geodesic curvature requires that perpendicular lines passing
through the circles do not diverge relative to gµν . We conclude that the red lines in Figure A3(c) span
an equal length on each circle. Therefore, on a flat R2#P 2 the circumference is constant at every radius,
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as illustrated in Figure A3(c). The manifold has the same geometry as a cylinder. If we consider M2 as
an embedding in the same sense as the mapping

X(a; τ, σ, φ) =
( τ

1− τ
, σ, φ, ξτ sin(2σ + θ), ξτ cos(2σ + θ)

)
, (51)

then we can describe the geometry of M2 in terms of the magnitude ξ. In the degenerate case that the
magnitude ξ goes to zero, M2 approaches a flat disk, and the weight ρ compensates for the geometry
such that Cρ = b for circumference C and constant b. In Figure A3(c) we see a R2#P 2 with a few
circles shown as examples of circumferences around the P 2. Ricci flatness requires that those circles
have constant circumference, with conformal weight ρ such that ρ = b/C.

(a) (b) (c)

Figure A3: (a) We see a R2#P 2 with a circle drawn around it. (b) We cut on the
circle to produce the manifold M2. If R̂ = 0 on the interior of M2, then, by the Gauss-
Bonnet theorem, the geodesic curvature on the boundary of M2 is kg = 0. This is true
for any circular boundary we draw. (c) For example, we see some examples of circular
boundaries on which the geodesic curvature is zero. Zero geodesic curvature requires
that perpendicular lines passing through the circles do not diverge relative to gµν . For
example, the red lines shown do not diverge. We conclude that the red lines span
an equal length on each circle. Therefore any such circle has constant circumference
relative to gµν , with conformal weight ρ such that Cρ = b.

We now consider a more general solution for Ricci flatness on R2. In two dimensions, for any harmonic
function κ, if a metric η̄µν is Ricci flat then the metric e2κη̄µν is also Ricci flat [82]. In our case we start
with Ricci flat η̄µν , and we construct a harmonic function κ. For multiple source points pi there is a
harmonic function

κ(x) =
∑
i

− ln(d(pi, x)) (52)

where d(pi, x) is the distance from pi to x. Then we set

ρ = eκ (53)

and
gµν = ρ2η̄µν (54)

is a Ricci flat metric. If there is only one source, this solution exactly matches the solution we obtained
before for the degenerate P 2, which was ρ = eκ = 1/d = b/C. Thus we can replace the points pi by a
degenerate P 2 (one for which its embedding has magnitude ξ = 0). If the magnitude ξ increases, then
the displacement of the embedding into x4 and x5 increases, which increases the length of a path around
the P 2. Therefore, increasing the magnitude ξ increases the circumference C. Ricci flatness requires
that the weighted circumference Cρ is constant, and therefore ρ must change to preserve the weighted
circumference Cρ.

Next let us consider the case of R2 with natural metric η̄µν = diag(1, 1). In this slice let us assume there
is a P 2 with ξ = 0 at the point p1 = (1, 0) and at the point p2 = (−1, 0), as in Figure A4(a). (Later
we will use this plane as the slice φ = 0, φ = π through R3#(S1 × P 2), but we completely suppress the
third dimension for the moment.) We begin by finding the harmonic function κ(x) =

∑
i− ln(d(pi, x))

and then setting ρ = eκ. Now we use the metric ρ2η̄µν with degenerate P 2 at each of the points pi. In
Figure A4(b) we see bipolar coordinates, which are the 2-dimensional version of toroidal coordinates with
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φ angle suppressed. The circles in blue are the same as the circles of constant τ in toroidal coordinates.
Relative to ρ2η̄µν , these circles have constant circumference Cρ. We can increase the magnitude ξ of
both of the P 2 as desired, compensating for the geometry by reducing ρ as needed. Bipolar coordinates
give an isometric mapping between the cylinder R× S1 and the Ricci flat R2#P 2#P 2. The blue circles
of Figure A4(b) are mapped from the circles of the cylinder corresponding to the S1 fiber. The red circles
of Figure A4(b) are mapped from the parallel lines of the cylinder corresponding to the R fiber.

(a) (b)

Figure A4: (a) We see a R2#P 2#P 2 with a P 2 at the point p1 = (1, 0) and at the
point p2 = (−1, 0). We will later use this as a slice through a R3#(S1 × P 2). (b)
We see bipolar coordinates centered around p1 and p2. Bipolar coordinates are the
2-dimensional version of toroidal coordinates with the φ coordinate suppressed. The
circles of constant τ , shown in blue, have constant circumference relative to ρ2η̄µν .
The circles of constant σ, shown in red, are also geodesics relative to ρ2η̄µν .

C.3 Flatness in 2+1 Dimensions

Now we introduce the time dimension. The usual inherited metric for a flat manifold is η̄µν = diag(1,−1,−1).
Introducing the manifold R × (R2#P 2#P 2), we have P 2 on the manifold at p1 = (t, 1, 0) and p2 =
(t,−1, 0). We can scale the metric as above to get ρ2η̄µν . Volume in three dimensions, however,
scales as ρ3, and we find that the time dimension makes the conformal scaling no longer Ricci flat.
If we want to write a volume element, then we must compensate for the time dimension, so we use
symmetry and motion. Rather than beginning with initial metric η̄µν = diag(1,−1,−1), we intro-
duce an embedding of the manifold that is in motion with some velocity β in x4 and x5. We set
β such that γ = ρ. If we describe the metric using a coordinate chart, then the inherited metric is
hµν = diag(1/γ2,−1,−1) = diag(1/ρ2,−1,−1). Thus the metric includes the factor ρ(∆t/γ) = ∆t, and
the metric becomes ρ2hµν , which is Ricci flat.

In the previous section, we mapped isometrically to the manifold R2#P 2#P 2 from the cylinder S1×R.
Here, we can map isometrically to this manifold R × (R2#P 2#P 2) from R × (R × S1). The manifold
R × (R × S1) with its natural metric is Ricci flat. Therefore this manifold with its embedding and
conformal weight is also Ricci flat. Again, the magnitude ξ of the P 2 can be expanded, and ρ is reduced
to compensate. Now that ρ is linked to motion through ρ = γ, we see that reducing ρ reduces the
velocity.

C.4 Flatness in 3+1 Dimensions

Introducing the third spatial dimension, we again find that adjustments are necessary to produce Ricci
flatness. The Weyl metric gives a description of any axially symmetric Ricci flat geometry in terms of
two potential functions, U and V . In cylindrical coordinates (t, r, z, φ) the Weyl metric is

ds2 = e2Udt2 − e−2U (r2dφ2 + e2V (dr2 + dz2)). (55)

The potential function U satisfies the Laplacian

∇2U = U,zz + U,rr + (1/r)U,r = 0 (56)
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and the potential function V is related in the following way

V,r = r((U,r)
2 − (U,z)

2) (57a)

V,z = 2rU,rU,z. (57b)

We can extend the description that we used for 2+1 dimensions by saying that the harmonic function
κ is analogous to the potential function U . For 3+1 dimensions, we use a harmonic function κ whose
source is the degenerate S1 × P 2. The function κ is uniquely determined by its source, up to a constant
factor. The function U , which also satisfies the Laplacian, is proportional to κ. Subsequently we can
solve for V in terms of U .

Ideally we would solve for exact solutions U and V . Here, we will sketch a derivation of approximations
for U and V . To derive an approximation, we consider a slice of R4 with constant t and constant φ, and
we observe the behavior of U and V near the degenerate S1 × P 2 at (r, z, φ) = (1, 0, 0). Furthermore,
we consider behavior only along the r coordinate, so that z = 0. In this case, we have

U = − ln |r − 1| (58a)

V,r = r(U,r))
2 = r

( d

dr
(− ln |r − 1|)

)2

. (58b)

For Equation (58a) we have used Equation (52). In the limit of approaching the degenerate S1 × P 2,
the radial term r is approximately constant in comparison to the derivatives. We therefore have

V,r = (U,r)
2 =

(
− d

dr
ln |r − 1|

)2

=
( 1

r − 1

)2

(59)

V = − 1

r − 1
. (60)

We obtain the same result by performing the integral in Equation (59) exactly and ignoring the smaller
term near the S1 × P 2. Near the S1 × P 2, the effect of the function V dominates over that of U =
− ln |r − 1|. Just inside the torus, two nearby points with slightly different r will have a large ds
according to Equation (55), since r . 1 and V � 0. Just outside the torus, two nearby points with
slightly different r will have a small ds since r & 1 and V � 0. As we go from the inside of the ring to the
outside, the sign of V changes, and we see that, in the limit as we approach the degenerate S1×P 2, the
average value of V is zero. The potential U has the correct asymptotic behavior for both the near case,
as we approach the degenerate S1 × P 2, and the far case as we approach asymptotic flatness at infinite
distance. In the near case, the spacelike components of the metric have conformal weight ρ that scales
like 1/r and preserves Ricci flatness on the S1 × P 2 in the same way as the 2-dimensional case. In the
far case, the spacelike components of the metric have conformal weight ρ that scales like e1/r in the same
way as a metric for any compact source with flat background. We therefore take as an approximation
that V = 0 everywhere and that we can obtain this approximation from the Weyl metric by a coordinate
transformation. (See [83] for some discussion of such a coordinate transformation.) We therefore arrive
at the conformastatic metric

ds2 = e−2κdt2 − e2κ(r2dφ2 + dr2 + dz2) (61)

such that κ is a harmonic function, where we note that κ is proportional to any harmonic function U
whose source is the degenerate S1 × P 2.

In the previous section we had the problem that introducing the time dimension added a factor ρ to
the volume element, and we dealt with that problem by adding motion to the embedding. Here we are
introducing the φ dimension, and this adds another factor ρ to the volume element. The volume element
of the manifold is dV/γ, and therefore if the manifold M is oriented such that γ = ρ2, then a factor γ
will compensate for the factors of ρ in both the t and φ coordinate. By comparison, in the 2+1 case, the
conformal weight scales dt2 by ρ2 and the embedding introduces a factor γ = ρ, so that we have

ρ2
(dt

γ

)2

= ρ2
( 1

ρ2

)
dt2 = dt2. (62)

In the 3+1 case, the dt2 term scales by ρ2 and the embedding introduces a factor γ = ρ2, so that we
have

ρ2
( 1

ρ4

)
dt2 =

( 1

ρ2

)
dt2 = e−2κdt2 (63)
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where we have used Equation (53). Again, the P 2 geometry can be expanded, and ρ compensates such
that circumference is conserved. Likewise, as ρ reduces, γ = ρ2 implies that the velocity of motion also
reduces.

Figure A5: (a) We show R2 with degenerate P 2 at (r, z, φ) = (1, 0, 0) and (r, z, φ) =
(1, 0, π). The harmonic function κ is κ(x) =

∑
i− ln(d(pi, x)). (b) We show a dφ slice

from R3 with corresponding harmonic function κ that is weighted by rdφ. The dots
indicate the location of the degenerate S1 × P 2 in this dφ slice.

We call the distance from a point to the particle d. In three spatial dimensions, far away from a particle κ
scales as 1/d. Therefore limd→∞ eκ = limd→∞ e1/d = 1. This is in contrast to the 2-dimensional solution
where κ scales like − ln(d), and ρ converges to zero at infinite distance. Therefore, in three dimensions
it makes sense to say that at infinite distance ρ = 1 and γ = ρ2 = 1.

Appendix D Obstruction to Single R3#(S1 × P 2) Annihilation

In Section 6.5 we described how a pair of particles could annihilate while maintaining Ricci flatness. In
Section 6.10 we described the P-contraction, and in so doing it may seem as if we introduced a way in
which a single lepton could disappear while maintaining Ricci flatness.

The knot R3#(S1 ×P 2) can P-contract to R3#(S1 ×P 2)∗. The P-contraction can still satisfy R̂µν = 0,
meaning there is a ρ distribution such that the metric gµν is Ricci flat on R3#(S1 × P 2)∗. Suppose
we could extend this P-contraction such that the R3#(S1 × P 2) is P-contracted at every angle φ. This
process would annihilate the R3#(S1 × P 2) without needing to interact with another particle. What
prevents this?

In the Appendix Section C, we described how R3#(S1 × P 2) can satisfy the constraint R̂µν = 0. The
solution requires motion such that the Lorentz factor γ is related to the conformal weight ρ by γ = ρ2.
Assume that the knot R3#(S1 × P 2)∗ is P-contracted over some non-zero length (more than just one
point). Then the manifold has no extension into x4 and x5 along that length. Along the P-contracted
segment, the rotational motion of the R3#(S1 × P 2)∗ is motion of the manifold parallel to itself, which
is equivalent to no motion and γ = 1. Therefore the rotation of R3#(S1 × P 2)∗ does not compensate
for ρ along the P-contracted segment in the way we worked out in the Appendix Section C. This implies
that the manifold does not satisfy R̂µν = 0 there. This implies that it is not possible to P-contract a
R3#(S1×P 2)∗ on a segment of non-zero length. Therefore P-contraction cannot annihilate an individual
R3#(S1 × P 2).

Appendix E Quark Charge

We might wonder why we do not find in nature a quark without a charge. Is there a theoretical reason
that a quark must have a charge? We address that question here. In a hadron the quarks are packed
closely together, and the topology of the knots affects the curvature of the manifold. If the quarks are
charged, the electromagnetic field changes the metric gµν = ρ2Aα,µA

α
,ν and allows the constraint R̂µν = 0

to be maintained. Quarks have a complicated relationship between geometry and field, which explains
how there can be multiple solutions for the charges of the quarks. Experimentally, there have been
no indications of uncharged quarks, suggesting that the electric field is either necessary or maximizes
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entropy in all observed cases.

Appendix F Obstruction to Charged and Unlinked P-contraction

In Section 6.10 we introduced the P-contraction, in which a knot may spontaneously change from one
generation to another, for example, a muon neutrino to an electron neutrino or a strange to a down.
We stipulated that the knot must be uncharged, and we outlined a mechanism by which a linked knot
might become uncharged before its P-contraction. In this section we discuss why a charged, unlinked
knot cannot P-contract.

The electric field appears in the metric gµν = ρ2Aα,µA
α
,ν through derivatives of the Aν field, namely

through A0
,ν and Aν,0. On a charged knot R3#(S1 × P 2), the A0

,ν derivatives come to a cusp on the

knot. On the cusp, the second derivatives of Aν are infinite. To preserve the constraint R̂µν = 0, there
must be a geometric cusp with opposite curvature at the same location. At a P-contraction, the knot
R3#(S1 × P 2)∗ contracts the amplitude of the P 2 down to a point. If the knot were charged, then the
cusp of the geometric curvature would have to also contract to a point. There is no way to contract that
geometric curvature to a point, and therefore a charged R3#(S1 × P 2) cannot P-contract by itself.

Appendix G Generation Limits

It is possible that further exploration of the theory will show that generations of neutrinos for n > 2 are
disallowed. Here we present a possible explanation that neutrinos with n > 2 are not observed.

Let us assume neutrinos have mass of the order 0.1 eV/c2. The mass cannot be less than the energy E
from spin angular momentum L. We model the knot R3#(S1 × P 2) as a spinning ring of infinitesimal
thickness. In the rest frame of the neutrino, the rotation of the ring is relativistic, and the integral of
the magnitude of that momentum is approximately

p ≈ E

c
= 0.1 eV/c. (64)

If r is the length scale of the knot, then we have

pr ≈ L (65)

and

pr ≈ ~
2
. (66)

From this we obtain r ≈ 1× 10−6 m, and the time-scale for light to traverse the neutrino in its own rest
frame is 3× 10−15 s. According to one model [84] for the masses and mixing angles of the neutrinos, the
tau neutrino and the muon neutrino oscillate over a distance given by

D

E
≈ 500 km/GeV (67)

where E is the energy of the neutrino. If we use the rest energy of the neutrino 0.1 eV, then we can
write the following for a time-scale in the rest frame of the neutrino: τ = ∆t/γ, where ∆t is the time for
an oscillation to occur in the lab frame

τ =
∆t

γ
=
D

cγ
=
γmD

Ecγ
=
Dm

Ec

τ =
(5× 105 m

109 eV

)( 0.1 eV

3× 108 m/s

)
≈ 2× 10−13 s. (68)

In the rest frame of the neutrino, the oscillation happens on a time scale that is comparable to the time for
light to traverse the neutrino. For oscillations between generations n = 2 and higher the transition may
occur too fast for the particle to establish a mass eigenstate. We therefore expect three distinguishable
generations of neutrino masses corresponding to R3#(S1 × P 2)0, R3#(S1 × P 2)1, and R3#(S1 × P 2)n
for n ≥ 2.

Further exploration of the theory may show that generations of charged fermions with n > 2 are not
seen because of energy and stability or are disallowed for other reasons.
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Appendix H Particle Size

Charged leptons have always appeared pointlike in collision experiments, but the assumption of pointlike
charged particles has presented a number of theoretical problems. In this theory a fermion is represented
by a knot, and a knot has a finite size. We saw how to find an estimate of the size of a knot in Section G.
We can calculate a lower bound for the size of a charged fermion far from other particles. Consider,
for example, an electron, which has mass 0.5 MeV/c2. In the neutrino calculation we assumed the rest
energy was almost all due to angular momentum, while in the case of the electron, the rest energy is an
upper bound for angular momentum energy. In this case we obtain r & 2× 10−13 m.

In this theory the geometry of a knot, and thus its size, depends on its proximity to other knots. We
showed in Section C that the conformal weight ρ can be described in terms of a harmonic function κ
such that ρ = eκ. The harmonic function κ increases as it approaches the knot R3#(S1 × P 2). If there
are multiple knots R3#(S1×P 2), then each contributes its own harmonic function κi, and the conformal
weight is ρ = exp(

∑
i κi). As a charged knot is approached by another charged knot, the value of ρ

near that knot increases. To conserve charge, the diameter of the knot reduces as the distance to other
knots reduces. As distance goes to zero, the size of the charged lepton knot goes to zero. Therefore the
electron appears to be pointlike in collisions.

Quarks, by contrast, are linked to other knots and are constantly in close proximity. The constraint
R̂µν = 0 requires that the quarks are in relative motion so that the Lorentz factor γ can counter the
effect of proximity on the conformal weight ρ. Interaction of quarks with other particles has a smaller
effect on their apparent size.

H.1 Recombination of Branches is Equivalent to Addition of Quantum Am-
plitudes ψ

If multiple collections of branches with knots recombine, the quantum amplitude of the union of the
recombining collections is equal to the sum of the quantum amplitudes of the individual collections. To
show this, we use multiple indices such that we have multiple collections of branches Cm, each of which
consists of branches Bmn that have knot amplitudes amn and weight coefficients kmn.

In each of the collections Cm individually, there are total weight coefficients km, weighted average am-
plitudes ām, and quantum amplitudes ψm as follows:

km =
∑
n

kmn (69)

ām = (
∑
n

kmn)−1(
∑
n

kmnamn) (70)

ψm = (
∑
n

kmnamn) = kmām. (71)

See eqns. (25), (26), (27), and (28) in the text. If all the branches in all of the collections Cm recombine,
then they have a total weight coefficient k, weighted average amplitude ā, and quantum amplitude ψ as
follows:

k =
∑
m

∑
n

kmn =
∑
m

km (72)

ā = (
∑
m

∑
n

kmn)−1(
∑
m

∑
n

kmnamn) = (
∑
m

km)−1(
∑
m

kmām) (73)

ψ = (
∑
m

∑
n

kmnamn) = (
∑
m

∑
n

kmn)ā = (
∑
m

km)(
∑
m

km)−1(
∑
m

kmām) = (
∑
m

kmām) =
∑
m

ψm.

(74)

Therefore the quantum amplitude of the union of all the branches in all the collections Cm is the sum
of the quantum amplitudes, ψ =

∑
m ψm. Likewise, the quantum amplitude of the union has the same

relationship to the weighted average of the union, ψ = (
∑
m kmām) = kā.
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Appendix I The Lagrangian is Optimized by a Single Rotation
Direction in the Co-dimension

Particle dynamics and gravitational dynamics both result in rotation of the manifold of the form
(x0, x1, x2, x3) 7→ (x0, x1, x2, x3, b sin(kjx

j), b cos(kjx
j)) where j = 0, 1, 2, 3, and b is the amplitude. The

Lagrangian is maximized when the average velocity of rotation is maximized. We show here that the
average velocity of rotation is maximized when the direction of rotation is the same for every contributing
source, that is, when the sign of k0 is the same for all sources.

If we introduce a single rotational source, then we can say its motion is of the form (t, x1, x2, x3, f4, f5)
in f4 and f5. We can express the motion using a complex number such that f4 + f5i = r1e

iω1t. The
linearized Ricci flatness constraint is approximately a wave equation, and the motion from the rotational
source propagates outward like a wave. That motion can have one of two directions with either ω1 > 0
or ω1 < 0. The velocity is therefore

v =
d

dt

(
r1e

iω1t
)

= iω1r1e
iω1t. (75)

Even for a single source, there is some variation in the magnitude r1 and the angular velocity ω1. We
construct a probability distribution to model the displacement r1e

iω1t. We also construct a probability
distribution to model the velocity iω1r1e

iω1t associated with each displacement. Figure A6(a) shows a
piece of the manifold with a source of rotational motion shown by the black point and the magnitude of
the motion that it induces shown in green. We take a sample of that motion at the blue point. Sampling
that motion at the blue point over time generates a probability distribution P (x4, x5) for the probability
of finding the point with those x4 and x5 coordinates. That distribution is shown in Figure A6(b). The
motion of the point is correlated to its position, and for every value of (x4, x5) there is a probability
distribution of velocities V (x4, x5). Figure A6(c) shows the expected value of V (x4, x5) at each value of
x4 and x5.

(a) (b) (c)

Figure A6: (a) There is a single source for rotational motion on the manifold, the
black point. The magnitude of the rotational motion is shown in green. We take
a sample of that motion at the point shown in blue. (b) We show the probability
distribution for displacement at that point. The distribution corresponds to r1e

iω1t

with variation of r1 and ω1. (c) We show the expected value of the velocity of rotation
corresponding to each value of the displacement. The distribution corresponds to
iω1r1e

iω1t with variation of r1 and ω1.

We now create the displacement and velocity probability distributions that result from multiple sources.
For both displacement and velocity, the distribution of the sum is the convolution of the individual
distributions. Now if we assume that we can choose the direction of rotation of each of the sources,
then we maximize the Lagrangian by maximizing the magnitude of the velocities in the combined ve-
locity distribution. This results from having all the contributing rotational sources rotating in the same
direction.
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52. Bialas, P. & Oleś, A. K. Correlations in connected random graphs. Physical Review E 77, 036124
(2008).

53. Kreimer, D. Knots and Feynman diagrams 13 (Cambridge University Press, 2000).

54. Luse, K. M. Invariants of knots, graphs, and Feynman diagrams (The George Washington Univer-
sity, 2008).

55. Pettini, M. Geometry and topology in Hamiltonian dynamics and statistical mechanics (Springer
Science & Business Media, 2007).

56. Landau, L. & Lifshitz, E. Classical Theory of Fields, Fourth Revised English Edition (Pergammon
Press, 1975).

57. Slavov, B. et al. The Photon as a Soliton: I. Planck’s Density of Radiation. Comptes Rendus de
l’Academie Bulgare des Sciences 53, 6–43 (2000).

45



58. Kamenov, P. & Slavov, B. The photon as a soliton. Foundations of Physics Letters 11, 325–342
(1998).

59. Weinberg, S. A model of leptons. Physical review letters 19, 1264 (1967).

60. Salam, A. & Ward, J. Electromagnetic and weak interactions. Physics Letters 13, 168–171. issn:
0031-9163 (1964).

61. Glashow, S. L., Iliopoulos, J. & Maiani, L. Weak interactions with lepton-hadron symmetry. Physical
review D 2, 1285 (1970).

62. Gell-Mann, M. The eightfold way (CRC Press, 2018).

63. Okubo, S. Note on unitary symmetry in strong interactions. Progress of Theoretical Physics 27,
949–966 (1962).

64. Sakurai, J. J. Currents and mesons (University of Chicago press, 1969).

65. Rosenzweig, C., Schechter, J. & Trahern, C. Is the effective Lagrangian for quantum chromody-
namics a σ model? Physical Review D 21, 3388 (1980).

66. Di Vecchia, P. & Veneziano, G. Chiral dynamics in the large N limit. Nuclear Physics B 171,
253–272 (1980).

67. Witten, E. Large N chiral dynamics. Annals of Physics 128, 363–375 (1980).
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