
Knot physics: Neutrino helicity

C. Ellgen

⇤

(Dated: March 2, 2015)

Abstract

We use the assumptions of knot physics to prove that a collection of interacting neutrinos and

antineutrinos maximize their quantum probability when all neutrinos are of the same helicity and

all antineutrinos are of the opposite helicity. In a previous paper we showed that the geometry of

gravity spontaneously breaks symmetry. We show here that the geometry of gravity couples the

neutrino linear momentum to its quantum phase. Likewise, the quantum phase of an interacting

neutrino couples to its spin angular momentum. Therefore, the symmetry breaking of gravity

couples the linear momentum of an interacting neutrino to its spin angular momentum, producing

consistent helicity.
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This is a work in progress that requires updates for clarity and content.

I. INTRODUCTION

This paper will use many of the assumptions from the paper ”Physics on a Branched

Knotted Spacetime Manifold” [1] (available at www.knotphysics.net), which is necessary

background reading. In particular, we show in that paper that gravity spontaneously breaks

symmetry. We show in this paper how that spontaneous symmetry breaking produces the

symmetry breaking of neutrino helicity.

Neutrinos have topology R3
#(S

1 ⇥ P

2
). Their spin angular momentum comes from

waves that travel in the direction of the S

1
fiber. For two neutrinos passing by each other,

Lorentz transformations change the shape of the waves relative to the neutrino passing in the

opposite direction. When neutrinos pass by each other, the geometry of their waves interacts

either constructively or destructively. We show that the constructive interaction occurs when

neutrino/neutrino and anti-neutrino/anti-neutrino interactions have the same helicity, and

that the destructive interaction occurs when the neutrino/anti-neutrino interactions have the

same helicity. Therefore, for a collection of interacting neutrinos and anti-neutrinos there

are two stable states. Either all neutrinos have left-handed helicity and all anti-neutrinos are

opposite or else all neutrinos have right-handed helicity and all anti-neutrinos are opposite.

II. NEUTRINO HELICITY

We first show that gravity couples the neutrino’s linear momentum to its quantum phase.

Then we show that neutrino interactions couple the spin angular momentum of the neutrino

to its quantum phase. Because of those couplings, a fixed relationship between the neutrino

linear momentum and spin angular momentum optimizes the quantum probability of a

collection of interacting neutrinos.

In this paper we will assume that the A

⌫
field has the form A

⌫
= x

⌫
+"

⌫
for small "

⌫
. We

also assume that the manifold geometry is of the form (x

0
, x

1
, x

2
, x

3
, f

4
, f

5
) for functions f

4

and f

5
that depend on x

0
, x

1
, x

2
, x

3
, which is to say that the manifold is mostly flat with

some displacement into the x

4
and x

5
directions.
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A. Gravity couples linear momentum to quantum phase

Far from particles, the geometry of M is dominated by gravitational e↵ects, and we will

describe the geometry of M as (x

0
, x

1
, x

2
, x

3
, b sin(y), b cos(y)) for some scalars b and y that

are functions of x

0
, x

1
, x

2
, x

3
. We will use y to show the relation between gravitational

rotation, spin angular momentum, and quantum phase.

Gravity breaks parity. If there is no electromagnetic field, then we will set the gauge

A

⌫
= x

⌫
and gravitational rotation is of the form (x

0
, x

1
, x

2
, x

3
, b sin(k

⌫
x⌫), b cos(k

⌫
x⌫)) for

a causal vector field k

⌫
. We showed in [1] that gravity spontaneously breaks symmetry

such that the direction of rotation is the same everywhere. In other words, the sign of k

0

is the same everywhere. If there is an electromagnetic field, the A

⌫
field does not satisfy

A

⌫
= x

⌫
. We recall from [1] that the manifold is constrained via the metric gµ⌫ = ⇢

2
A↵,µA

↵
,⌫ .

We therefore use A

⌫
rather than x

⌫
to determine the form of the rotation, which we write

(x

0
, x

1
, x

2
, x

3
, b sin(k

⌫
A⌫), b cos(k

⌫
A⌫)). Using the variable y to describe the rotation, we can

therefore describe the gravitational rotation as y = k

⌫
A⌫ .

We use a map from 3 dimensions to 5 dimensions to describe an elementary fermion

R3
#(S

1 ⇥ P

2
). The coordinates of the 3-space are toroidal coordinates (⌧, �,�) and the

coordinates of the 5-space are a mix of toroidal and Cartesian coordinates (⌧, �,�, x

4
, x

5
).

If we denote by T the solid torus ⌧ > 1, then we can map from R3 � T to R5
,

X(⌧, �,�) =

⇣
⌧

1� ⌧

, �,�, ⌧ sin(2�), ⌧ cos(2�)

⌘
(1)

Including the time coordinate and the quantum phase rotation of the particle we have

X(t, ⌧, �,�) =

⇣
⌧

1� ⌧

, �,�, ⌧ sin(2� + !t), ⌧ cos(2� + !t)

⌘
(2)

which means that y = 2� + !t close to the particle, ignoring the gravitational background.

The knot can also have opposite � orientation:

X(t, ⌧, �,�) =

⇣
⌧

1� ⌧

, �,�, ⌧ sin(�2� + !t), ⌧ cos(�2� + !t)

⌘
(3)

which means that y = �2�+!t close to the particle, ignoring the gravitational background.

Neutrinos are created by an interaction that involves a W boson and a charged lepton.

The W boson, in this theory, is an intermediate geometry that produces one of two results.
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FIG. 1: The diagrams show constant � slices of R3#(S1 ⇥ P 2). The red arrows are @µy. The

left diagram shows @µy on a R3#(S1 ⇥ P 2), in the +� direction. The other two diagrams show a

lepton L becoming a neutrino. The lepton transfers charge to another S1 ⇥ P 2. The transfer of

charge gives L momentum p in the opposite direction. Gravity produces a background rotation,

with @µy = @µ(k⌫A⌫). The charges on each S1 ⇥ P 2 determine the direction of the spacelike

components of @µ(k⌫A⌫), which either point towards L (middle diagram) or away from L (right

diagram). The vector field @µy must be consistent, therefore the direction of @µ(k⌫A⌫) must match

the direction of the +� (middle diagram) or �� (right diagram) arrows on L. The sign of the charge

transfer determines whether the resulting particle is a neutrino or antineutrino. The sign of the

charge transfer also determines the direction of the spacelike components of @µ(k⌫A⌫). Therefore

the relation between quantum phase � and the linear momentum p for neutrinos is opposite to

that of antineutrinos. Beginning with a neutrino L and producing a charged lepton would reverse

the direction of p in the diagram.

The first possibility is that the W boson transfers charge away from a charged lepton to

produce a neutrino. The second possibility is that the W boson produces a neutrino and a

corresponding anti-lepton. In both cases, there is an electric field gradient at the creation of

the neutrino, and we can treat both cases as equivalent for the purposes of this discussion.

In Fig. 1 we see the relationship between the electric field and the neutrino geometry. At

creation, y = k⌫A
⌫
must be consistent with y = +2�+!t or y = �2�+!t. At the neutrino

creation, the A

0,µ
field is lightlike, which determines whether the spacelike components of

the vector @

µ
y = @

µ
(k⌫A

⌫
) point towards the neutrino or away from it. Therefore, the

sign of the charges determines whether the R3
#(S

1 ⇥ P

2
) orientation is +� or ��. The

linear momentum of the neutrino is equal and opposite to the momentum that results from
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the interaction with W boson. Therefore the field at the neutrino creation determines the

relationship between the neutrino’s linear momentum and quantum phase. The charge that

produces a neutrino is opposite to that of an antineutrino, therefore the relationship between

linear momentum and quantum phase is also opposite.

B. Neutrino interaction couples spin angular momentum to quantum phase

Neutrinos have a large S

1
radius (see [1]) of about 10

�6
m, are abundant, and travel at

relativistic velocities. Therefore the neutrino/neutrino interactions are frequent, as in Fig. 2

where we see a pair of neutrinos interacting such that one neutrino passes through the center

of the other. As the neutrinos pass by each other, their geometry interacts. The geometric

interaction can either increase the quantum amplitude of the neutrinos or decrease it. The

quantum amplitude determines the probability and we find that the neutrinos will tend

towards the behavior that maximizes their quantum amplitude, and therefore maximizes

probability. In the left diagram of Fig. 3 we see a neutrino and an antineutrino passing by

each other. The red arrows again indicate the direction of increasing y corresponding to the

term +� or �� in the eqns. (2) and (3). The red arrows have opposite direction, which

implies that the neutrino and antineutrino contribute oppositely to @

µ
y, and therefore the

geometric interaction reduces their quantum amplitudes as they pass by each other. In the

right diagram of Fig. 3 we see a pair of neutrinos (or, equivalently, antineutrinos) passing by

each other. We see that, in this case, the red arrows are aligned and contribute positively

to each other in a way that increases the quantum amplitude of each of the neutrinos as

they pass by each other. While this result is interesting, we will need an additional step

to describe how the spin angular momentum of the interacting neutrinos influences the

quantum amplitude.

First, we note the way that random contributions to the quantum amplitude a↵ect prob-

ability. Suppose we have a map of the form

X(t, ⌧, �,�) =

⇣
⌧

1� ⌧

, �,�, (1 + f(�))⌧ sin(2� + !t), (1 + f(�))⌧ cos(2� + !t)

⌘
(4)

with some random continuous function f that has E[f ] = 0 and small variance. Then we

note that the quantum probability is of the form

P = exp

⇣Z 2⇡

0

ln(1 + f(�))

2
) d�

⌘
(5)
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FIG. 2: The left diagram shows a constant � slice of one neutrino passing through another one.

The right diagram shows the same pass-through in a constant � slice. Because of the large S1

radius of neutrinos (see [1]) and the abundance of neutrinos, these pass-throughs are common.

The logarithm ln is a convex function, and therefore increasing the variance of f(�) reduces

the expected value of the integral. The spin angular momentum of a neutrino is the result of

waves that circulate around the S

1
fiber of the particle. The map that includes spin angular

momentum has the form

X(t, ⌧, �,�) =

⇣
⌧

1� ⌧

, �,�, (1+f(�� vt))⌧ sin(2�+!t), (1+f(�� vt))⌧ cos(2�+!t)

⌘
(6)

In this map, the random contribution to the particle amplitude is a wave of the form

1 + f(�� vt) that circulates around the particle with velocity v. This is the geometry

of the spin angular momentum in the rest frame of the particle. To describe the geometric

interaction of two neutrinos that pass by each other, we shift to the center of mass frame.

The corresponding Lorentz transformation changes the shape of the circulating waves. An

equivalent way of saying this is that the Lorentz transformation is the result of the velocity

of the neutrino as well as the velocity of the wave f(�� vt) that produces its spin angular

momentum.

In Fig. 4 we see two di↵erent cases of neutrinos passing by each other. In each case, we

choose the directions of spin angular momenta that will maximize the quantum probability.

In the left diagram, we see the case where a neutrino and antineutrino pass by each other.

The red arrows are oppositely aligned and we can reduce the destructive interference by

maximizing the random contribution from spin angular momentum. This is accomplished

when the helicities of the neutrino and antineutrino are opposite. In the right diagram, we

see the case where two neutrinos (or, equivalently, two antineutrinos) pass by each other.

The red arrows are aligned and we maintain the constructive interference by minimizing
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the variance from the spin angular momentum contribution. This is accomplished when the

helicities of the neutrinos are the same.

FIG. 3: The diagrams show constant � slices of one neutrino passing through another neutrino.

The red arrows are @µy. As above, they indicate the � orientation of the P 2. The quantum phase

amplitude is maximized when the red arrows point in the same direction at the point where the

P 2 slices are closest. That happens when both are neutrinos or both are antineutrinos.

FIG. 4: The diagrams show constant � slices of one neutrino passing through another neutrino with

vectors indicating their spin angular momenta. The red arrows are @µy. The spin angular momenta

are those which make the red arrows @µy as consistent as possible after Lorentz transformation.

On the left is a neutrino/antineutrino interaction; the spin angular momenta reduce the opposition

of the vector @µy. On the right is a neutrino/neutrino interaction; the spin angular momenta

preserve the alignment of the vector @µy after Lorentz transformation. The helicity for neutrinos

is the same. The helicity for antineutrinos is the same. The helicity of neutrinos is opposite to the

helicity of antineutrinos.

7



III. BARYON ASYMMETRY

The distinction between neutrinos and antineutrinos is the consequence of two sponta-

neously broken symmetries. The first symmetry is the parity breaking of the gravitational

background rotation. The second symmetry is the spin angular momenta of neutrinos and

antineutrinos. If, in the early universe, these symmetries were unbroken, then the produc-

tion of neutrinos and antineutrinos would have had random quantum phase and spin angular

momenta. After symmetry breaking, there would be some number of neutrinos and antineu-

trinos but no reason to assume that those numbers would be exactly equal. It is reasonable

to expect that one type would have a slight excess that would lead to excess matter in the

universe.

IV. CONCLUSION

In knot physics, neutrinos are an uncharged R3
#(S

1 ⇥ P

2
). The way in which neutrinos

are produced creates a coupling between their quantum phase and their linear momentum.

Interactions between neutrinos causes a coupling between their quantum phases and their

spin angular momentum. The e↵ect of these geometric relationships is that neutrinos are

more likely to have one consistent helicity and antineutrinos are more likely to have the

opposite helicity.

[1] C. Ellgen www.knotphysics.net Physics on a Branched Knotted Spacetime Manifold
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