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Abstract

Knot physics describes the geometry of particles and fields. In a previous paper we described

the topology and geometry of an electron. From the geometry of an electron we can construct a

mathematical model relating its charge to its spin angular momentum. From experimental data,

the spin angular momentum is ~/2. Therefore the mathematical model provides a comparison of

electron charge to Planck’s constant, which gives the fine structure constant ↵. We find that using

only electromagnetic momentum to derive the fine structure constant predicts a value for ↵�1 that

is about two orders of magnitude too small. However, the equations of knot physics imply that the

electromagnetic field cusp must be compensated by a geometric field cusp. The geometric cusp is

the source of a geometric field. The geometric field has momentum that is significantly larger than

the momentum from the electromagnetic field. The angular momentum of the two fields together

predicts a fine structure constant of ↵�1 ⇡ 136.85. Compared to the actual value of ↵�1 ⇡ 137.04,

the error is 0.13%. Including the e↵ects of virtual particles may reduce the error further.

⇤Electronic address: cellgen@gmail.com; www.knotphysics.net
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This paper may receive additional updates for clarity.

I. BACKGROUND

This paper will use the assumptions from the paper “Knot physics: Spacetime in co-

dimension 2” [1] (available atwww.knotphysics.net), which is necessary background read-

ing. Many mathematical conventions and assumptions will be carried over from that paper.

The application of partial derivatives on embedded manifolds, in particular, may be unfa-

miliar to many readers. MathematicaTM documents are also available at knotphysics.net

that provide mathematical modeling associated with the calculations here.

II. OVERVIEW

A. The fine structure constant

The fine structure constant is a dimensionless number ↵ defined by the relation

↵ = q

2

/(4⇡✏
0

~c) where q is the charge of the electron. In our discussion and calculations we

will use ✏

0

= µ

0

= c = 1. Then

↵ =
q

2

4⇡~ (1)

The charge of the electron is the fundamental unit of charge associated with every el-

ementary particle. Planck’s constant is a unit of action that appears in a wide variety of

quantum applications. The fact that the charge of every electron is the same and that every

elementary particle has a charge which is an integer multiple of electron charge is of great

physical significance, but derivation of that fact is not obvious. Furthermore, the number

↵ that determines the magnitude of the elementary charge has not previously been shown

to have a numerical formula in terms of non-physical constants. There is a very precise

experimental measurement of ↵, but there is no known theoretical calculation that produces

the number without experimental data as an input. The purpose of this paper is to show

two things. First, we show that the properties of elementary fermions in knot physics imply

leptons have unit charge. Second, we approximate the fine structure constant by applying

those properties. Showing integer charge for hadrons and deriving an exact number for ↵

are subjects for future work.
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B. Running of the coupling

Experimental measurements of the fine structure constant show that its value depends

on the energy scale of the measurement. In [1] we derive the Lagrangian from the funda-

mental assumptions and find that the electromagnetic component of the Lagrangian can be

approximated as L = (1/2)wF ↵�

F

↵�

, where F ↵� is the electromagnetic field tensor. We see

the familiar term F

↵�

F

↵�

, but we note that this Lagrangian is only a leading order approxi-

mation. In particular, we show that the electromagnetic field can reach infinite energy even

while the tensor F ↵� remains finite. Calculation of the running of the coupling would require

including higher order terms in the Lagrangian. In this paper, we use only the leading order

approximation and therefore neglect the running of the coupling.

C. Planck’s constant

Planck’s constant is a unit of action that appears in several di↵erent quantum calcula-

tions. Though it is not necessary for the purposes of this paper, it may help illuminate the

calculation to hypothesize an interpretation of Planck’s constant.

The spacetime manifold M has metric g
µ⌫

= ⇢

2

A

↵,µ

A

↵

,⌫

. Using that metric, the manifold

M is Ricci flat, R̂µ⌫ = 0. Even with that constraint, M has degrees of freedom such that

the manifold is under-constrained. Therefore, the manifold maximizes entropy. In classical

thermodynamics, a system at equilibrium averages (1/2)kT of energy for each degree of

freedom. Similarly, we hypothesize that the spacetime manifold M averages an amount of

action ~ for each degree of freedom. Then M is a branched manifold such that for each

degree of freedom the branches are randomly distributed with variance corresponding to

Planck’s constant. For an elementary fermion, the branches of M separate into branches

with spin up and branches with spin down. The di↵erence in angular momentum between

spin up and spin down is a degree of freedom, therefore the di↵erence in angular momentum

is ~ and each spin orientation has average angular momentum of ~/2.
Regardless of the interpretation, it is known from experimental data that elementary

fermions have spin angular momentum S = ~/2. We will derive a formula for spin angular

momentum as a function of charge squared, S(q2) = ~/2. This formula gives a comparison

between charge and Planck’s constant. We can therefore use it to find a value for the fine
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structure constant as

↵

�1 =
4⇡~
q

2

=
8⇡S(q2)

q

2

(2)

where we have chosen to invert the equation to solve for ↵�1.

D. Overview of the derivation

We derive the fine structure constant by deriving the electron’s spin angular momentum

as a function of charge. The electron has an electromagnetic field that comes to a cusp.

Ricci flatness implies that an electromagnetic field cusp requires a corresponding geometric

cusp to preserve flatness. The geometric cusp produces a geometric field that is proportional

to the electromagnetic field. To find the momentum from the geometric field, we compare

the energy in the geometric field to the energy in the electromagnetic field. The comparison

is analogous to Hooke’s law E = (1/2)kx2. The electromagnetic field F

µ⌫ has the analog

of a spring constant k

F

and spring extension x

F

. The geometric field C

µ⌫ has the analog

of a spring constant k

C

and spring extension x

C

. We find that the geometric field exten-

sion is larger than the electromagnetic field extension by a factor of 4⇡, which means that

x

C

= 4⇡x
F

. The spring constant for each field is proportional to the number of degrees of

freedom in each field. The electromagnetic field is sensitive to the change of A⌫ parallel to

the manifold, which has 4 dimensions. The electromagnetic field therefore has 4 degrees of

freedom. The geometric field is sensitive to the change of A⌫ in 5 spatial dimensions, for 5

degrees of freedom. Therefore k

C

= (5/4)k
F

. We can then compare the energies and find

that

E

C

= (1/2)k
C

x

2

C

= (1/2)(5/4)k
F

(4⇡x
F

)2 = (20⇡2)(1/2)k
F

x

2

F

= 20⇡2

E

F

(3)

The energy-momentum tensors of the two fields are proportional to each other, and therefore

the energy and momentum in the geometric field is 20⇡2 times larger than the energy

and momentum in the electromagnetic field. The total angular momentum is the sum of

the contributions from the geometric and electromagnetic components. From that angular

momentum, we solve for the fine structure constant. The result is ↵�1

calc

⇡ 136.85 with 0.13%

error compared to the experimental measurement ↵�1

exp

⇡ 137.04. Virtual particles may have

di↵ering e↵ect on the electromagnetic field energy compared to the geometric field energy,

which may contribute error. These errors can be reduced by the calculation of additional

Feynman diagrams.
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III. COORDINATES

We will use the following three coordinate systems to describe particle geometry.

A. Cylindrical coordinates

The full 6 dimensions of the Minkowski space can be expressed as (t, r, z,�, x4

, x

5) using

notation that borrows from two di↵erent coordinate conventions. These coordinates will

typically be used to describe fields and geometry when t, x4, and x

5 are suppressed. In that

case the coordinates are (r, z,�).

B. Toroidal coordinates

R3 has toroidal coordinates (⌧, �,�) that relate to polar coordinates (r, z,�) as follows:

r = a

sinh ⌧

cosh ⌧ � cos �

z = a

sin �

cosh ⌧ � cos �

(4)

The sets of constant ⌧ are tori centered around a circle of radius a. At distance zero from

the circle we have ⌧ = 1. At infinite distance from the circle we have ⌧ = 0. The sets of

constant � are spheres such that their intersection with sets of constant ⌧ are orthogonal.

Close to the circle, the coordinate � is a polar angle around the circle. Toroidal coordinates

are an orthogonal coordinate system. Their properties assist with field equations. We see

sets of constant ⌧ and � illustrated in Fig. 1.

FIG. 1: This is a diagram of bipolar coordinates. The diagram

shows sets of constant ⌧ in blue and sets of constant � in red in the

rz plane. The value of ⌧ increases to infinity as the size of the blue

circles goes to zero. We extend to 3-dimensional toroidal coordinates

by including the polar angle � that has the same form as the polar

angle of cylindrical coordinates.
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C. Mapping coordinates

We use a map from 3 dimensions to 5 dimensions to describe an elementary fermion

R3#(S1 ⇥ P

2). The coordinates of the 3-space are toroidal coordinates (⌧, �,�) and the

coordinates of the 5-space are a mix of toroidal and Cartesian coordinates (⌧, �,�, x4

, x

5).

If we denote by T the solid torus ⌧ > 1, then we can map from R3 � T to R5.

X(⌧, �,�) =
⇣
⌧/(1� ⌧), �,�, ⌧ sin(2�), ⌧ cos(2�)

⌘
(5)

The domain of the map is R3 � T , which is R3 with the solid torus T removed, where

⌧ > 1. Then it stretches R3�T to cover the missing torus using ⌧ ! ⌧/(1�⌧), so that points

on the surface of the torus (⌧ = 1) map to the circle at the center of the torus (⌧ = 1).

Not only that, the map makes each point on the boundary of T identical to the point that

is diametrically opposite it. This happens because we have

X(1, � + ⇡,�) = (1, � + ⇡,�, sin(2� + 2⇡), cos(2� + 2⇡))

= (1, �,�, sin(2�), cos(2�))

= X(1, �,�) (6)

We see this illustrated in Fig. 2. The map X produces a knot R3#(S1 ⇥ P

2).

FIG. 2: On the left is R2 �D

2 with polar angle �. On the right is R3 � T , in toroidal coordinates,

with a slice at � = �

0

. At the green circle we have ⌧ = 1. The map X makes opposite points

on the circumference of the green circle identical. This identification of diametrically opposite

points creates the topology R2#P

2 in the left diagram and the topology R3#(S1⇥P

2) in the right

diagram.
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IV. ELECTRON GEOMETRY

In this paper we will model the geometry, field, and angular momentum of a single electron

that is at rest at infinite distance from any other particle. More specifcally, we will model a

single branch of the branched manifold M . On that branch there is one knot that has the

electron topology. Using its topology, we will derive geometric and physical characteristics

of the knot. To simplify the description, we will make a few assumptions that are equivalent

to the fixing the gauge, reference frame, and quantum branch weight of the branch that we

are describing.

We fix the gauge by assuming that the field A

⌫ has the form A

⌫ = x

⌫ + "

⌫ such that "⌫

goes to zero at infinite distance from the particle. We have the metric g

µ⌫

= ⇢

2

A

↵,µ

A

↵

,⌫

. If

A

⌫ = x

⌫ then g

µ⌫

= ⇢

2

⌘̄

µ⌫

where ⌘̄
µ⌫

is the inherited metric using distances from the 6-space.

Assuming A

⌫ = x

⌫ + "

⌫ we have g

µ⌫

= ⇢

2(⌘̄
µ⌫

+ ✏

µ⌫

) for some ✏

µ⌫

. We assume that the field

is weak relative to its maximum possible value, and therefore we assume that ✏
µ⌫

is small.

We fix the reference frame by assuming that the electron knot is at rest with its center

at the origin of the 6-dimensional spatial coordinates (t, 0, 0, 0, 0, 0).

We fix the quantum branch weight of the branch we are describing by assuming that the

weight w goes to 1 at infinite distance from the electron knot. This also implies that ⇢ goes

to 1 because w = ⇢

4.

A. Ricci flatness with no electromagnetic field

1. Flatness in 2 dimensions

We begin by finding Ricci flat solutions for R2#P

2, the 2-dimensional case. To make

R2#P

2 we remove a disk from a plane and set each point on the disk boundary identical to

the point that is diametrically opposite. Although the disk with the plane removed, R2�D

2,

is flat, when we identify points to create R2#P

2, it is no longer flat unless we meet certain

conditions for ⇢. We draw a circle on the manifold around the P

2 as in the left diagram of

Fig. 3. We cut along the circle to produce a manifold with boundary, which we call M
2

, as

in the middle diagram of Fig. 3. Then we apply the Gauss-Bonnet theorem to M

2

,

Z

M2

R̂ dA+

Z

@M2

k

g

ds = 2⇡�(M
2

) (7)
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In this equation, the symbols are the conventional ones for this theorem. The geodesic

curvature k
g

provides a measure of how much a curve deviates from a geodesic in a manifold,

and the Euler characteristic � depends only on the topology of the manifold. We have

R̂ = 0 on M

2

. The Euler characteristic of P 2 is �(P 2) = 1. The Euler characteristic of M
2

(equivalent to P

2 � D

2) is �(M
2

) = 0. The geodesic curvature is k

g

= 0 at every radius.

Zero geodesic curvature requires that perpendicular lines passing through the circles do not

diverge relative to g

µ⌫

. We conclude that the red lines in the right diagram of Fig. 3 span an

equal length on each circle. Therefore, on a flat R2#P

2 the circumference is constant at every

radius, as illustrated in the right diagram of Fig. 3. The manifold has the same geometry

as a cylinder. We can use a parameter a = ⇠e

i✓ to describe the geometry. If we consider M
2

as an embedding, in the same sense as the mapping that we used for R3#(S1 ⇥ P

2), which

was

X(a; ⌧, �,�) =
⇣
⌧/(1� ⌧), �,�, ⇠⌧ sin(2� + ✓), ⇠⌧ cos(2� + ✓)

⌘
(8)

then we can describe the geometry of M
2

in terms of the magnitude ⇠. In the degenerate case

that the magnitude ⇠ goes to zero, M
2

approaches a flat disk and the weight ⇢ compensates

the geometry such that C⇢ = b for circumference C and constant b. In the right diagram of

Fig. 3 we see a R2#P

2 with a few circles shown as examples of circumferences around the

P

2. Ricci flatness requires that those circles have constant circumference, with conformal

weight ⇢ such that ⇢ = b/C.

We now consider a more general solution for Ricci flatness on R2. In 2 dimensions, for

any harmonic function , if a metric ⌘̄

µ⌫

is Ricci flat then the metric e

2

⌘̄

µ⌫

is also Ricci

flat [3]. In our case we start with Ricci flat ⌘̄
µ⌫

and we construct harmonic function . For

multiple source points p
i

there is a harmonic function (x) =
P

i

� ln(d(p
i

, x)) where d(p
i

, x)

is the distance from p

i

to x. Then ⇢ = e

 and ⇢

2

⌘̄

µ⌫

is a Ricci flat metric. If there is only

one source, this solution exactly matches the solution we obtained before for the degenerate

P

2, which was ⇢ = e

 = 1/d = b/C. Thus we can replace the points p

i

by a degenerate

P

2 (one for which its embedding has magnitude ⇠ = 0). If the magnitude ⇠ increases, then

the displacement of the embedding into x

4 and x

5 increases, which increases the length of a

path around the P

2. Therefore, increasing the magnitude ⇠ increases the circumference C.

Ricci flatness requires that the weighted circumference C⇢ is constant, therefore ⇢ changes

to preserve the weighted circumference C⇢.

Next let us consider the case of R2 with natural metric ⌘̄

µ⌫

= diag(1, 1). Later we will
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FIG. 3: In the left diagram, we see a R2#P

2 with a circle drawn around it. We cut on the circle to

produce the manifold M

2

, as shown in the middle diagram. If R̂ = 0 on the interior of M
2

, then,

by the Gauss-Bonnet theorem, the geodesic curvature on the boundary of M
2

is k

g

= 0. This is

true for any circular boundary we draw. For example, in the right diagram we see some examples

of circular boundaries on which the geodesic curvature is zero. Zero geodesic curvature requires

that perpendicular lines passing through the circles do not diverge relative to g

µ⌫

. For example,

the red lines shown do not diverge. We conclude that the red lines span an equal length on each

circle. Therefore any such circle has constant circumference relative to g

µ⌫

, with conformal weight

⇢ such that C⇢ = b.

use this plane as the slice � = 0,� = ⇡ through R3#(S1 ⇥ P

2), but we completely suppress

the third dimension for the moment. In this slice let us assume there is a P

2 with ⇠ = 0

at the point p
1

= (1, 0) and at the point p
2

= (�1, 0), as in the left diagram of Fig. 4. We

begin by finding the harmonic function (x) =
P

i

� ln(d(p
i

, x)) and then ⇢ = e

. Now we

use the metric ⇢

2

⌘̄

µ⌫

with degenerate P

2 at each of the points p

i

. In the right diagram of

Fig. 4 we see bipolar coordinates, which are the 2-dimensional version of toroidal coordinates

with � angle suppressed. The circles in blue are the same as the circles of constant ⌧ in

toroidal coordinates. Relative to ⇢

2

⌘̄

µ⌫

, these circles have constant circumference C⇢. We

can increase the magnitude ⇠ of both of the P 2 as desired, compensating for the geometry by

reducing ⇢ as needed. Bipolar coordinates give an isometric mapping between the cylinder

R⇥S

1 and the Ricci flat R2#P

2#P

2. The blue circles of Fig. 4 are mapped from the circles

of the cylinder corresponding to the S1 fiber. The red circles of Fig. 4 are mapped from the

parallel lines of the cylinder corresponding to the R fiber.
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FIG. 4: We see a R2#P

2#P

2 with a P

2 at the point p

1

= (1, 0) and at the point p

2

= (�1, 0).

We will later use this as a slice through a R3#(S1 ⇥ P

2). The diagram on the right shows

bipolar coordinates centered around p

1

and p

2

. Bipolar coordinates are the 2-dimensional version

of toroidal coordinates with the � coordinate suppressed. The circles of constant ⌧ , shown in blue,

have constant circumference relative to ⇢

2

⌘̄

µ⌫

. The circles of constant �, shown in red, are also

geodesics relative to ⇢

2

⌘̄

µ⌫

.

2. Flatness in 2+1 dimensions

Now we introduce the time dimension. The usual inherited metric for a flat manifold is

⌘̄

µ⌫

= diag(1,�1,�1). Introducing the manifold R⇥ (R2#P

2#P

2), we have P 2 on the man-

ifold at p
1

= (t, 1, 0) and p

2

= (t,�1, 0). We can scale the metric as above to get ⇢2⌘̄
µ⌫

. The

volume in 3 dimensions, however, scales by ⇢

3, and we find that the time dimension makes

the conformal scaling no longer Ricci flat. To compensate for the time dimension, we use

symmetry and motion. Rather than beginning with initial metric ⌘̄
µ⌫

= diag(1,�1,�1), we

introduce an embedding of the manifold that is in motion with some velocity �. We set � such

that � = ⇢. Then the inherited metric is ⌘̄

µ⌫

= diag(1/�2

,�1,�1) = diag(1/⇢2,�1,�1).

Thus the metric includes the factor ⇢(�t/�) = �t and the metric becomes ⇢2⌘̄
µ⌫

, which is

Ricci flat.

In the previous section, we mapped isometrically to the manifold R2#P

2#P

2 from the

cylinder S1 ⇥ R. Here, we can map isometrically to this manifold R ⇥ (R2#P

2#P

2) from

R⇥ (R⇥S

1). The manifold R⇥ (R⇥S

1) with its natural metric is Ricci flat. Therefore this

manifold with its embedding and conformal weight is also Ricci flat. Again, the magnitude

⇠ of the P 2 can be expanded and ⇢ is reduced to compensate. Now that ⇢ is linked to motion

through ⇢ = �, we see that reducing ⇢ reduces the velocity. In particular, a P

2 that is fully
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expanded to ⇢ = 1 has no motion.

3. Flatness in 3+1 dimensions

Introducing the third spatial dimension, we again find that adjustments are necessary

to produce Ricci flatness. The Weyl metric gives a description of any axially symmetric

Ricci flat geometry in terms of two potential functions, U and V . In cylindrical coordinates

(t, r, z,�) the Weyl metric is

ds2 = e

2Udt2 � e

�2U(r2d�2 + e

2V (dr2 + dz2)) (9)

The potential function U satisfies the Laplacian

r2

U = U

,zz

+ U

,rr

+ (1/r)U
,r

= 0 (10)

and the potential function V is related in the following way

V

,r

= r((U
,r

)2 � (U
,z

)2) (11a)

V

,z

= 2rU
,r

U

,z

(11b)

We can extend the description that we used for 2+1 dimensions by saying that the

harmonic function  is analogous to the potential function U . For 3+1 dimensions, we use

a harmonic function  whose source is the degenerate S

1 ⇥ P

2. The function  is uniquely

determined by its source, up to a constant factor. The function U , which also satisfies the

Laplacian, is proportional to . Subsequently we can solve for V in terms of U .

Ideally we would solve for exact solutions U and V . Here, we will sketch a derivation of

approximations for U and V . To derive an approximation, we consider a slice of R4 with

constant t and constant �, and we observe the behavior of U and V near the degenerate

S

1⇥P

2 at (r, z,�) = (1, 0, 0). Furthermore, we consider behavior only along the r coordinate,

so that z = 0. In this case, we have

U = � ln |r � 1| (12a)

V

,r

= r(U
,r

))2 = r

⇣ d

dr
(� ln |r � 1|)

⌘
2

(12b)
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In the limit of approaching the degenerate S

1 ⇥ P

2, the radial term r is approximately

constant in comparison to the derivatives. We therefore have

V

,r

= (U
,r

)2 =
⇣
� d

dr
ln |r � 1|

⌘
2

=
⇣ 2

r � 1

⌘
2

(13)

V = � 4

r � 1
(14)

We obtain the same result by performing the integral in eqn. (13) exactly and ignoring the

smaller term near the S

1 ⇥ P

2. Near the S

1 ⇥ P

2, the e↵ect of the function V dominates

over that of U = � ln |r� 1|. Just inside the torus, two nearby points with slightly di↵erent

r will have a large ds according to eqn. 9, since r . 1 and V � 0. Just outside the torus,

two nearby points with slightly di↵erent r will have a small ds since r & 1 and V ⌧ 0. As

we go from the inside of the ring to the outside, the sign of V changes and we see that,

in the limit as we approach the degenerate S

1 ⇥ P

2, the average value of V is zero. The

potential U has the correct asymptotic behavior for both the near case, as we approach the

degenerate S1⇥P

2, and the far case as we approach asymptotic flatness at infinite distance.

In the near case, the spacelike components of the metric have conformal weight ⇢ that scales

like 1/r and preserves Ricci flatness on the S1 ⇥P

2 in the same way as the two dimensional

case. In the far case, the spacelike components of the metric have conformal weight ⇢ that

scales like e

1/r in the same way as any compact source with flat background. We therefore

take as an approximation that V = 0 everywhere and that we can obtain this approximation

from the Weyl metric by a coordinate transformation. (See [2] for some discussion of such

a coordinate transformation.) We therefore arrive at the conformastatic metric

ds2 = e

�2dt2 � e

2(r2d�2 + dr2 + dz2) (15)

such that  is a harmonic function, where we note that  is proportional to any harmonic

function U whose source is the degenerate S

1 ⇥ P

2.

In the previous section we had the problem that introducing the time dimension added

a factor ⇢ to the volume element, and we dealt with that problem by adding motion to the

embedding. Here we are introducing the � dimension, and this adds another factor ⇢ to the

volume element. The volume element of the manifold is dV/�, and therefore if the manifold

M is oriented such that � = ⇢

2, then a factor � will compensate for the factors of ⇢ in both

the t and � coordinate. By comparison, in the 2+1 case, the conformal weight scales dt2 by
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⇢

2 and the embedding introduces a factor � = ⇢, so that we have

⇢

2

⇣dt
�

⌘
= ⇢

2

⇣ 1

⇢

2

⌘
dt2 = dt2 (16)

In the 3+1 case, the dt2 term scales by ⇢

2 and the embedding introduces a factor � = ⇢

2, so

that we have

⇢

2

⇣ 1

⇢

4

⌘
dt2 =

⇣ 1

⇢

2

⌘
dt2 = e

�2dt2 (17)

Again, the P

2 geometry can be expanded, and ⇢ compensates such that circumference is

conserved. Likewise, as ⇢ reduces, � = ⇢

2 implies that the velocity of motion also reduces.

FIG. 5: On the left is R2 with degenerate P

2 at (r, z,�) = (1, 0, 0) and (r, z,�) = (1, 0,⇡).

The harmonic function  is (x) =
P

i

� ln(d(p
i

, x)). On the right is a d� slice from R3 with

corresponding harmonic function  that is weighted by rd�. The dots indicate the location of the

degenerate S

1 ⇥ P

2 in this d� slice.

We call the distance from a point to the particle d. In three spatial dimensions, far away

from a particle  scales as 1/d. Therefore lim
d!1 e

 = lim
d!1 e

1/d = 1. This is in contrast

to the 2-dimensional solution where  scales like � ln(d), and ⇢ converges to zero at infinite

distance. Therefore, in three dimensions it makes sense to say that at infinite distance ⇢ = 1

and � = ⇢

2 = 1.
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B. Ricci flatness with weak field

In this section we will use the coordinate convention

(y0, y1, y2, y3, y4, y5) = (t, r, z,�, x4

, x

5) (18)

so that we can use numerical indices 1, 2, 3 to represent cylindrical coordinates. This provides

an index y

3 = � that runs parallel to the S

1 fiber of the knot.

The electromagnetic field F

µ⌫ on the electron comes to its maximum at a cusp. Using the

map X(⌧, �,�), the cusp occurs at X(1, �,�), as in Fig. 6. Even at the cusp, the geometry

must be Ricci flat. In local coordinates Ricci flatness can be written

@

�

@

�

g

µ⌫

= 0 (19)

FIG. 6: In the left figure, we see a “top view” of a R3#(S1 ⇥ P

2) with coordinates x

1 and x

2

as shown. The green circle represents the torus X(1,�,�) where X is the map associated with

R3#(S1 ⇥ P

2). Relative to the map X, the slice is at an angle of constant �, and the angle � is

shown. The dark line is a constant x2 slice that passes through the R3#(S1 ⇥ P

2) at two points.

We then show that slice in x

0 and x

1 coordinates. The blue curves are sets of constant A

0. The

gradient of those lines is the electric field A

0

,⌫

.

For the terms on the diagonal, g
jj

, the Ricci flatness constraint in local coordinates is

@

�

@

�

g

jj

= @

�

@

�(A
↵,j

A

↵

,j

) = 0 (no sum over j is implied). The electric field A

0

,j

comes to

a cusp. To preserve the flatness constraint @

�

@

�(A
↵,j

A

↵

,j

) = 0, the magnetic field satisfies

A

3

,j

= A

0

,j

in a neighborhood of the cusp so that the A

3,j

A

3

,j

term negates the A

0,j

A

0

,j

term. Then F

↵�

F

↵�

= 0 at the cusp. We can consider the electromagnetic field as if it has

a charge current source J

⌫ . The relationship between A

3

,j

and A

0

,j

on the cusp implies a

current J⌫ with J

0 = J

3 6= 0 and J

1 = J

2 = 0. O↵ the cusp, the current is zero, J⌫ = 0.
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The electric field also a↵ects the metric components g

0⌫

= ⇢

2

A

↵,0

A

↵

,⌫

. To preserve the

constraint @�

@

�

g

µ⌫

= 0, we have the geometric components of g
µ⌫

compensate the electric

field components. We can separate out the electric field component of the metric as

g

0⌫

= ⇢

2

A

↵,0

A

↵

,⌫

= ⇢

2(A
0,0

A

0

,⌫

+
X

↵ 6=0

A

↵,0

A

↵

,⌫

) (20)

We have A

0,0

= 1. The conformal weight ⇢ must be smooth at the cusp, otherwise the

diagonal components of g
µ⌫

would break Ricci flatness. Therefore the other terms of eqn. (20)

have a cusp with @

�

@

�(
P

↵ 6=0

A

↵,0

A

↵

,⌫

) equal to �@

�

@

�

A

0

,⌫

, which implies the cusp has the

same magnitude as the electric field cusp.

The magnetic field a↵ects the metric components g
3⌫

= ⇢

2

A

↵,3

A

↵

,⌫

. We separate out the

magnetic field component of the metric

g

3⌫

= ⇢

2

A

↵,3

A

↵

,⌫

= ⇢

2(A
3,3

A

3

,⌫

+
X

↵ 6=3

A

↵,3

A

↵

,⌫

) (21)

We have A

3,3

= 1. Therefore the other terms have a cusp with @

�

@

�(
P

↵ 6=3

A

↵,0

A

↵

,⌫

) equal

to �@

�

@

�

A

3

,⌫

, which implies their cusp has the same magnitude as the magnetic field cusp.

We assumed that the electromagnetic field is weak such that the metric can be ap-

proximated as g

µ⌫

= ⇢

2(⌘̄
µ⌫

+ ✏

µ⌫

), where ✏

µ⌫

is a small contribution resulting from the

electromagnetic field. From the previous discussion in this section, we see that Ricci flatness

R̂

µ⌫ = 0 requires that the metric ⌘̄

µ⌫

must compensate the curvature of ✏
µ⌫

at the elec-

tromagnetic field cusp. The metric ⌘̄

µ⌫

is entirely geometric, it gives the distances in the

embedding space. Therefore we are compensating an electromagnetic field with a geometric

field. The only available variation of the geometry is waves in the x4 and x

5 coordinates. We

can describe these waves using the R3#(S1 ⇥ P

2) map. If we include the time coordinate

and the particle’s quantum phase rotation (as in [1]), we have the map

X(t, ⌧, �,�) =
⇣
t, ⌧/(1� ⌧), �,�, ⌧ sin(2� + !t), ⌧ cos(2� + !t)

⌘
(22)

We note that the rotation resulting from ! does not produce waves at the cusp. The cusp is

at X(t, 1, �,�) and this always maps to the unit circle in x

4 and x

5. This is the only part of

the map that has no motion resulting from the ! rotation term. We will use a modification

of eqn. (22) to achieve Ricci flatness. We modify the map with a function h(t, ⌧, �,�) that

changes the amplitude of the knot as a function of position. Then we have the map

X(t, ⌧, �,�) =
⇣
t, ⌧/(1� ⌧), �,�, h⌧ sin(2� + !t), h⌧ cos(2� + !t)

⌘
(23)
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The value of h stays close to h ⇡ 1 and we use h to produce small waves that circulate

around the particle, as in Fig. 7.

FIG. 7: A neutral R3#(S1 ⇥ P

2) with angular momentum has trans-

verse waves that rotate around the particle. The transverse waves have

periodic change in the x

4 and x

5 displacement. This is a top view slice

through a R3#(S1 ⇥ P

2). The black lines are lines of constant phase in

the x

4 and x

5 coordinates with rotation as indicated by the arrows.

The metric is g

µ⌫

= ⇢

2(⌘̄
µ⌫

+ ✏

µ⌫

) and the geometric component is ⌘̄

µ⌫

. We recall our

assumption that A

⌫ = x

⌫ + "

⌫ . The waves that circulate around the particle change the

components A4 and A

5 such that the derivatives A
4,0

, A
5,0

, A4

,⌫

, and A

5

,⌫

satisfy eqn. (20).

Likewise, the geometric waves have derivatives A
4,3

, A
5,3

, A4

,⌫

, and A

5

,⌫

that satisfy eqn. (21).

This implies that the waves produce a geometric cusp that matches, and is opposite to, the

cusp of the electromagnetic field. To achieve that, we modify the function h so that the

phase of the wave depends on position. The wave phase advances as a function of position

so that the phase displacement comes to a cusp at the same location as the electromagnetic

field. In the map of eqn. (23), the function h contributes to A

4 and A

5. The eqns. (20)

and (21) show that the derivatives of h come to a cusp whose magnitude in time derivatives

is determined by @

�

@

�(h,0

h

,⌫

) = �@

�

@

�(A0

,⌫

) and whose magnitude in spatial derivatives

is determined by @

�

@

�(h,3

h

,⌫

) = �@

�

@

�(A3

,⌫

). This relates the magnitude of the geometric

field cusp to the magnitude of the electromagnetic field cusp.

The waves on a charged knot advance in phase approaching the cusp, as in Fig. 8. In

this way, the curvature of the electromagnetic field cusps in A

0

,⌫

and A

3

,⌫

is negated by the

knot geometry to make the Ricci curvature flat at the cusp, @�

@

�

g

µ⌫

= 0. In particular

@

�

@

�

g

0⌫

= 0 and @

�

@

�

g

3⌫

= 0. See Fig. 9
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FIG. 8: If the S1⇥P

2 is charged then the electromagnetic field comes to a cusp on the green circle.

The cusp interferes with Ricci flatness. The geometry must compensate to restore R̂

µ⌫ = 0. To do

this, the rotating waves on the particle change phase based on the distance to the cusp. Depending

on the sign of the particle charge, the phase either moves forward (as on the left) or backward (as

on the right).

FIG. 9: In the left diagram we take a slice of the R3#(S1 ⇥ P

2), in the x

1 direction (as indicated

by the dark line) and the time dimension. In the second diagram, the black lines are lines of

constant phase of the waves rotating around the particle. In the third diagram, the blue lines

are lines of constant A

0 (as in Fig. 6). Crossing more black lines indicates traveling a greater

distance, the path has greater change in x

4 and x

5. Crossing more blue lines indicates traveling a

shorter distance by the metric g
µ⌫

= ⇢

2

A

↵,µ

A

↵

,⌫

because change of A0 reduces the e↵ective distance

traveled. The number of lines crossed by the arrows indicates the e↵ect on g

0⌫

. If only the electric

field contributed to the metric, then g

0⌫

would change at the cusp in a way that would not be Ricci

flat, (because @

�

@

�

g

0⌫

6= 0). To compensate, the geometry produces an equal but opposite change

in g

0⌫

to restore Ricci flatness, as in the last diagram.
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FIG. 10: This figure is similar to Fig. 9 except that it shows the cusp relation for g
3⌫

rather than

g

0⌫

. We recall that the index 3 refers to the � coordinate. We take a slice from the � coordinate

as shown in the first diagram. The second diagram shows the lines of constant phase for the

waves that circulate around the particle. The third diagram shows the lines of constant A3. The

fourth diagram shows both the lines of constant phase and constant A

3. Crossing fewer black

lines decreases the distance because it decreases the distance traveled in x

4 and x

5. Crossing more

blue lines increases the e↵ective distance because it increases the change of A3 coordinate, which

increases the distance in g

µ⌫

. We have these two e↵ects negate each other by having their cusps

with opposite orientation, as in the fourth diagram. In this way, we eliminate the cusp in the

metric for the component g
3⌫

.

V. FIELDS

A. Electromagnetic field

Calculation of F µ⌫ is complicated by the metric g

µ⌫

that depends on ⇢. We begin the

calculation by starting with a simpler case. We assume a flat 3+1 manifold that has a

circular charge current source J

⌫ on the circle (r, z,�) = (1, 0,�). Then we assume a field

W

µ⌫ that is defined on the flat 3+1 manifold such that

@

µ

W

µ⌫ = J

⌫ (24)

and W

µ⌫ goes to zero at infinite distance. The divergence condition implies
R
@V

W

µ⌫dA
µ

=
R
V

J

⌫dV : the integral over the surface of a volume V of the outward facing

components of W µ⌫ is equal to the integral over the volume of the source current J⌫ (in this

equation, dA
µ

is the outward facing area element). If we change the metric on the flat space

so that it has conformal weight ⇢ (making the metric ⇢

2

⌘̄

µ⌫

) then we can modify W

µ⌫ to

preserve the divergence relation. Specfically, we scale the field to make Y µ⌫ = (1/⇢)W µ⌫ . In
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two dimensions this would restore the condition r
µ

Y

µ⌫ = J

⌫ for any conformal change of

the metric. In 3+1 dimensions, the axially symmetric case that we are considering happens

to also satisfy this relation. The � and t coordinates scale by a factor of ⇢ due to the con-

formal factor of the metric, but the Lorentz contraction scales the volume element dV by a

factor of 1/� = 1/⇢2. The volume element dV is therefore unchanged. Because the field is

axially symmetric in �, this implies that we retain the desired condition r
µ

Y

µ⌫ = J

⌫ .

The electromagnetic field has a Lagrangian of the form
R
L d�

M

=
R
wF

↵�

F

↵�

d�
M

on the spacetime manifold. The w term is the quantum branch weight, w = ⇢

4.

From section IVA3, Ricci flatness requires � = ⇢

2. The Lorentz-contracted volume is

d�
M

= (1/�)dtdV = (1/⇢2)dtdV . Therefore the Lagrangian is

Z
L d�

M

=

Z
(⇢4/�)F ↵�

F

↵�

dtdV =

Z
⇢

2

F

↵�

F

↵�

dtdV =

Z
⇢F

↵�

⇢F

↵�

dtdV (25)

With a charge current J↵, the field equation is

r
µ

@(⇢F ↵�

⇢F

↵�

)

@(⇢A ,µ

↵

)
= r

µ

(⇢F ↵µ) = J

↵ (26)

This implies ⇢F µ⌫ / Y

µ⌫ = (1/⇢)W µ⌫ , and therefore

F

µ⌫ / (1/⇢2)W µ⌫ (27)

B. Geometric field

The Lagrangian of this theory, including the scalar curvature R, is

L = ⇢

4

⇣
(1/2)F ↵�

F

↵�

�R

⌘
(28)

We note that this is scalar curvature R relative to ⌘̄

µ⌫ , and not R̂ relative to g

µ⌫ . A field

generated by the R term in the Lagrangian also propagates and has momentum. We showed

previously how the electromagnetic field cusp produces a geometric field cusp. In this section

we describe the geometric field that results from the geometric field cusp.

When it is necessary to distinguish between the geometric field of gravity and the geomet-

ric field that results from the charge cusp, we will refer to the charge-generated field as the

geometric charge field. The geometric charge field on the charged R3#(S1 ⇥ P

2) is distinct

from the gravitational field. The source for the gravitational field is the energy-momentum
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tensor, which is additive for multiple particles. The source for the geometric charge field is

the charge-generated cusp, and it is not additive for multiple particles. Though the fields are

distinct, they both arise from the scalar curvature term in the Lagrangian and have some

similarities. The gravitational field for a steadily rotating mass has a gravitoelectromagnetic

field with components E
g

and B

g

, analogous to the electric and magnetic fields of electro-

magnetism. The geometric charge field has analogous components E
gc

and B

gc

whose source

is the geometric cusp. In the left diagram of Fig. 11 we see a knot on which E

gc

and B

gc

are

zero. In the right diagram we see a knot on which the fields are non-zero. We compose the

fields E
gc

and B

gc

into a single field C

µ⌫ . Using the standard field W

µ⌫ from section VA, we

write C

µ⌫ / (1/⇢2)W µ⌫ (also proportional to the electromagnetic field F

µ⌫ / (1/⇢2)W µ⌫).

To find the relative magnitudes of the momenta from geometry and electromagnetism, we

compare features of the fields.

FIG. 11: In the left diagram we take a slice of a neutral R3#(S1⇥P

2). There are waves circulating

around the particle and the lines of constant phase are shown in black. Because the particle is

neutral, the phase displacement is zero. If the particle is charged, then Ricci flatness requires

that the geometry of the waves negate the cusp corresponding to the electrmagnetic field. This

implies that the phase displacement comes to a cusp, as in the diagram on the right. Stretching

the geometry in this way requires energy. As the waves circulate around the knot, that geometric

energy also contributes to the angular momentum.

In [1] we described how the geometry of the manifold relates to entropy and the La-

grangian. Specifically, the Lagrangian has scalar curvature term L = �wR. We recall

from [1] that the manifold M is modeled by an unbranched manifold �
M

and that stretch-

ing �
M

reduces the geometric entropy of the branches of M . We can use the Lagrangian

to find the amount of force and energy that result from that reduction of entropy. In the

weak field limit, stretching the manifold �
M

by an extension x produces results analogous
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to Hooke’s law with force F = �kx and energy E = (1/2)kx2. To find the energy associated

with a particular extension, we therefore need to find the magnitude of the extension x and

the analogous spring constant k.

C. Field extension

The geometric field occurs because of waves in the function h that scale the amplitude

of the form

X(t, ⌧, �,�) =
⇣
t, ⌧/(1� ⌧), �,�, h⌧ sin(2� + !t), h⌧ cos(2� + !t)

⌘
(29)

Scaling by h a↵ects the values A

4 and A

5. The derivatives h

0 at the cusp have the form

A

4,0

, A
5,0

, A4

,⌫

, and A

5

,⌫

. If we set the derivatives h0 so that the metric is Ricci flat at the

cusp then, from section IVB, we see that the geometric field derivatives h0 have the same

magnitude as the electromagnetic field derivatives A0

,⌫

and A

3

,⌫

at the cusp. However, the

e↵ect on the entropy is determined by the amount of geometric extension produced by the

derivatives h

0. Changing h changes the amplitude of the knot. Changing the amplitude

changes the circumference of the S

1 ⇥ P

2 at the cusp. In particular, for a fixed � slice,

the circumference of the P

2 is C = 4⇡h. A change �h therefore changes the circumference

by �C = 4⇡�h. The entropy of the geometry is reduced by that e↵ect of stretching the

circumference. The energy associated with the derivatives h0 is E = (1/2)k(4⇡h0)2, which is

16⇡2 times larger than the corresponding energy for the electromagnetic field.

D. Degrees of freedom

Both the electromagnetic field and geometric field are derivatives of A⌫ . To compare

the microstates in electromagnetism and geometry, we compare the number of degrees of

freedom that are part of the electromagnetic field and the geometric field. The field F

µ⌫ is

determined by derivatives in directions parallel to the manifold M . This gives variation of

A

⌫ in 4 directions, for 4 degrees of freedom. There are 5 spacelike directions for geometric

e↵ects on entropy that correspond to the field C

µ⌫ . Therefore, the ratio of degrees of freedom

in the geometric field compared to the electromagnetic field is 5/4.
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E. Geometric fields summary

A charged particle has an electromagnetic field with a cusp. The electromagnetic field

cusp alone does not satisfy Ricci flatness. To make the metric Ricci flat, the geometric field

has a cusp with curvature that compensates the curvature of the electromagnetic field cusp.

This produces fields E
gc

and B

gc

satisfying the same field equations as the electromagnetic

fields E and B. The two fields E
gc

and B

gc

combine into a single tensor Cµ⌫ . The relative

magnitude of the momentum from C

µ⌫ compared to F

µ⌫ comes from the relative e↵ect on

entropy. The field C

µ⌫ has a displacement that is 4⇡ times larger than the corresponding

displacement in F

µ⌫ , which increases the momentum by a factor of 16⇡2. The field C

µ⌫ has

5 degrees of freedom and F

µ⌫ has 4 degrees of freedom. Therefore the geometric field has

momentum that is (5/4)16⇡2 = 20⇡2 times larger than the electromagnetic field momentum.

F. Energy and momentum on the electron

For the electromagnetism Lagrangian
R
L d�

M

=
R
(1/�)L dtdV =

R
(⇢4/�)F ↵�

F

↵�

dtdV

the energy momentum tensor is

T

µ⌫ =
⇣
⇢

4

�

⌘⇣
� F

↵µ

F

⌫

↵

+ (1/4)⌘̄µ⌫F ↵�

F

↵�

⌘
(30)

On an embedded manifold, the term ⌘̄

µ⌫

F

↵�

F

↵�

can have momentum if there are trans-

verse waves. The transverse waves have velocity ⌘̄

0⌫ that transports energy of the form

⌘̄

0⌫

F

↵�

F

↵�

. However, Lagrangian optimization implies that the e↵ect on T

µ⌫ is equivalent

whether the field is of the form �F

↵µ

F

⌫

↵

or ⌘̄µ⌫F ↵�

F

↵�

. For that reason we calculate as if

all field momentum is of the form �F

↵µ

F

⌫

↵

. We include the geometric field C

µ⌫ and the

momentum is

T

0µ = �
⇣
⇢

4

�

⌘⇣
F

↵µ

F

0

↵

+ C

↵µ

C

0

↵

⌘
(31)

where C

↵µ

C

0

↵

= (5/4)16⇡2

F

↵µ

F

0

↵

and F

µ⌫ / (1/⇢2)W µ⌫ and � = ⇢

2. We use a proportion-

ality constant k
F

such that F µ⌫ = (1/⇢2)k1/2

F

W

µ⌫ . Then total momentum is

T

0µ = �(1 + 20⇡2)(1/⇢2)k
F

W

↵µ

W

0

↵

(32)
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VI. MATHEMATICAL MODEL

The mathematical model is available as a MathematicaTM notebook file on

www.knotphysics.net. The mathematical model generates the conformal factor ⇢ and

the field W

µ⌫ and then integrates the angular momentum ~r ⇥ ~p to get the spin angular

momentum S using the formula

S =

Z
rT

0µdV =

Z
r(1 + 20⇡2)(1/⇢2)k

F

W

↵µ

W

0

↵

dV (33)

A. Inputs and calculations

We describe the inputs and calculations done in the MathematicaTM notebook. We use

polar coordinates (r, z, phi) and toroidal coordinates (tau, sigma, phi) for the mathe-

matical model. All calculations are done in the (r, z) plane, which is also the (tau, sigma)

plane, and extended to phi by symmetry.

The following is a list of the functions and inputs in the mathematical model. All functions

use toroidal coordinate inputs. The vector-valued functions produce vectors that are in

toroidal coordinates. Toroidal coordinates are orthogonal, which implies that cross products

such as ~

E ⇥ ~

B do not need angular corrections.

• radius: the S

1 radius of the particle. An input. Can be any positive value.

• charge: the particle charge. An input. Can be any non-zero value.

• rco(tau,sigma,phi): the value of the r coordinate in cylindrical coordinates. This is

necessary to calculate angular momentum ~r ⇥ ~p.

• dVtor(tau,sigma): the volume measure dV using toroidal coordinates. This is used

to calculate the integral of angular momentum in toroidal coordinates.

• harmonic(tau,sigma): a harmonic function whose source is the circle at tau=1.

• rho(tau,sigma): the conformal factor ⇢ of quantum branch weight such that ⇢4 = w.

• DivField(tau,sigma): a vector field that has zero curl and has divergence that is

zero everywhere except at tau=1.
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• ScaledDivField(tau,sigma): a scaling of DivField so that the divergence is equal

to the charge. On flat space, this would be the electric field.

• StokesCurrent(tau,sigma): a function to assist the calculation of CurlField.

• CurlField(tau,sigma): a vector field that has zero divergence and has curl that is

zero everywhere except at tau=1.

• ScaledCurlField(tau,sigma): a scaling of CurlField so that the curl is equal to the

current. On flat space, this would be the magnetic field.

We then use ScaledDivField and ScaledCurlField as components of the flat

space field tensor k

1/2

F

W

µ⌫ . The product k

F

W

↵µ

W

0

↵

is the cross product of

ScaledDivField and ScaledCurlField. Then the spin angular momentum is

S =
R
r(1 + 20⇡2)(1/⇢2)k

F

W

↵µ

W

0

↵

dV , using the above calculated functions. The inverse

fine structure constant estimate is ↵�1 = (8⇡S)(1/q2).

B. Momentum calculations

The calculation for ↵�1 is approximately ↵

�1

calc

= 136.854, compared to the experimental

value ↵�1

exp

= 137.036. The error is �0.18 and the percent error is 0.13%. The calculation was

performed, in part, by comparison of the entropy in electromagnetic fields to the entropy

in geometry. That entropy comparison follows from comparing the way that fields a↵ect

the microstates of electromagnetism and geometry. However, the microstates that were con-

sidered all had flat topology. The microstates associated with virtual fermions were not

counted. For example, the electric field a↵ects the microstates of virtual electron/positron

pairs by increasing the probability that pair production will put the charged particles in op-

posite alignment to the field. That reduces the entropy of the particle pairs. To increase the

accuracy of the calculation, one would need to develop additional methods of accounting for

the e↵ect on entropy from electromagnetic and geometric fields. Comparing those entropic

e↵ects would then give a comparison relative to particle charge.
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VII. OTHER PARTICLES

The derivation in this paper showed the relationship between Planck’s constant and

the charge of the electron. The derivation used the topology of the electron to show how

Lagrangian optimization of the geometry and fields produced a fixed ratio between spin

angular momentum and the square of the charge. To perform this same derivation on a

charged lepton of another generation, one would follow almost exactly the same procedure.

A charged lepton has topology R3#(S1⇥P

2)
n

for some n � 0. The spin angular momentum

is a constant ~/2, resulting from the expected amount of entropy for a single degree of

freedom. We know from the calculation that changing the radius of the knot does not

a↵ect the relationship between charge and spin angular momentum. We conclude that the

expected charge is the same for any charged lepton.

When deriving the charge on hadrons there are additional complications. When we Ricci

flatten a particle that has multiple linked R3#(S1 ⇥ P

2), we find that the geometry has

become more complicated than the leptonic case. Again, the Weyl metric characterizes

every axially symmetric solution. We expect that the hadron can still be described with

a Weyl metric g

µ⌫

. However, that metric on the hadron must be consistent with the more

complicated particle topology. For example, the two dimensional description of a baryon

would imply using the Gauss-Bonnet theorem on R2#P

2#P

2#P

2. For a hadron, it may be

necessary to use an electromagnetic field just to achieve Ricci flatness, which would explain

why there are no uncharged quarks. The fact that baryons can have charge magnitude 2

is also an indication that there is a greater variety of configurations for quarks than are

possible for leptons.

VIII. CONCLUSION

We used the geometry of a charged lepton to derive its spin angular momentum as a

function of the charge. Other factors, such as particle radius, have no net e↵ect on the

spin angular momentum. We therefore conclude that there is a fixed relationship between

the spin angular momentum and the charge. The spin angular momentum is fixed at ~/2,
therefore the charge must also be fixed. The relationship between Planck’s constant and

electron charge is expressed using the fine structure constant, which we derived here. The
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derived result of ↵�1 = 136.85 is di↵erent from the measured result ↵�1

exp

= 137.04 by 0.18,

which is 0.13%. Including additional Feynman diagrams in the calculation may reduce the

error.
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