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Abstract

In a previous work, we describe a branched four-dimensional spacetime manifold embedded in a six-
dimensional Minkowski space. In this paper, we provide additional information about the geometry
of the vacuum. In this description, the classical vacuum can be described as Lorentz invariant, and
the quantum vacuum is best described as Lorentz isotropic. We provide evidence that the vacuum
has properties corresponding to a vacuum energy and a vacuum temperature.
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1 Introduction

We assume that the spacetime manifold M is a branched manifold embedded in a Minkowski 6-space as
described in “Physics on a Branched Knotted Spacetime Manifold” [1]. On M there is a metric gµν that

is Ricci flat, written R̂µν = 0. We claim that these constraints allow M to have a vacuum with branches
that are able to spontaneously split and recombine. To match physical observations, this vacuum should
also be Lorentz isotropic. In this paper we describe how this branching can be Ricci flat and how it can
be Lorentz isotropic.

2 Boundary conditions of branch separation

Assume that B1 and B2 are branches of M that are separate from each other only within a bounded
region A. Let A1 and A2 be the regions of B1 and B2 where the branches are separate. Then A1 and
A2 have the same boundary as in Figure 1. On that boundary, the metric gµν must be single-valued
because a branched manifold must have a unique tangent space at every point. We claim that A1 and
A2 can be distinct from each other despite the constraint that gµν is everywhere Ricci flat.

Figure 1: The branched manifold M consists of branches B1 and B2 which are
separate from each other in the regions labeled A1 and A2.

On a topologically trivial manifold, the Ricci flatness constraint and the boundary condition would
uniquely determine the value of gµν everywhere. For that reason, we look at topological defects to find
degrees of freedom for the branches.

As shown in previous work, the constraints on M allow the production of pairs of topological defects
of homeomorphism class R3#(S1 × P 2). To maintain Ricci flatness, this type of topological defect
requires that the branch weight w = (− det(g))1/2 scales with distance from the defect according to the
approximate relation w ≈ e1/r for large r as shown in Figure 2. The gradient of the branch weight ∇w
appears in derivatives of gµν and the gradient therefore must be consistent between the two branches
wherever the branches meet. To allow two branches to have consistency of ∇w, we consider topological
defects that have the same location but different amplitude.

Figure 2: A topological defect R3#(S1 × P 2) is represented by the orange circle at
the center. The arrows indicate the gradient ∇w.
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3 Amplitude splitting

The geometry of an elementary fermion can be described using a map with parameters ξ and θ. The
map is from R3 − T , a 3-space in toroidal coordinates (τ, σ, ϕ) with τ > 1 removed. The map embeds in
R5 with the first three coordinates toroidal and the last two coordinates Cartesian.

X(ξ, θ; τ, σ, ϕ) =
( τ

1− τ
, σ, ϕ, ξτ sin(2σ + θ), ξτ cos(2σ + θ)

)
. (1)

We can make two distinct branches that have fermions with the same location but different amplitudes,
X(ξ1, θ; τ, σ, ϕ) and X(ξ2, θ; τ, σ, ϕ). If these fermions are at the same location, then the metric gµν is the
same for both of them at large distance. This allows us to have branches that are geometrically distinct
but with matching boundary conditions.

If we have a topological defect on one branch B of M , then this amplitude splitting allows us to split B
into two branches B1 and B2 corresponding to two values of the amplitude, ξ1 and ξ2 as in Figure 3.

Figure 3: On the top left, we show a constant x2x3 slice of M that passes through
a topological defect with amplitude ξ. On the bottom left, we show that slice in x1

and x4. On the right, we show the same slice after amplitude splitting results in two
distinct branches corresponding to two different amplitudes ξ1 and ξ2 of the defect.

To split a branch that has no topological defect we first create a pair of topological defects and then
perform the amplitude splitting operation on those defects as in Figure 4. In the vacuum, this process
consists of creating a virtual particle pair and using the geometry of those virtual particles to split the
branch.
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Figure 4: On the top, we show a slice through a virtual particle pair. On the bottom,
we show that this pair have amplitude splitting that results in two distinct branches.

4 Lorentz isotropy

In Knot Physics, there is entropy associated with branch splitting and recombination even in the vacuum.
From the previous section, we see that the production of virtual particles allows branch splitting and
recombination using the amplitude splitting operation. To match physical observation, the vacuum needs
to be Lorentz invariant at the classical level. In Knot Physics, the spacetime manifold is not uniform at
the quantum level and the branches of the spacetime manifold do not represent every possible quantum
state. Instead, the branches of M represent a sample of all possible states. We do not require that the
Knot Physics vacuum is Lorentz invariant, but we do require that it is Lorentz isotropic; the branches
of M must look the same on average in any inertial reference frame. This implies that the distribution
of virtual particles of M must be Lorentz isotropic.

If the virtual fermions travel at any velocity other than light speed, c = 1, then there will be an average
velocity of the virtual fermions that will transform like a 4-vector and the virtual particle distribution
will not be Lorentz isotropic. For that reason, it must be that virtual fermions travel at the velocity of
light. This is obviously different from the behavior of real fermions and we describe how this is possible
in the next section.

5 Virtual fermions travel at c

Real fermions travel at less than c. A real fermion has one knot on every branch of the spacetime
manifold. The presence of the real fermion impairs the entropy of the spacetime manifold and the
energy-momentum tensor of the fermion comes from that entropy impairment. The energy-momentum
tensor of a real fermion is a 4-vector; it becomes infinite at the velocity of light and cannot transform to
any velocity faster than light.

The manifold M is constrained such that there is a 3+1 tangent space at every point. A topological
defect on M can travel at c while still satisfying the constraint of a 3+1 tangent space as in Figure 5.
For that reason, a virtual fermion can travel at light speed. Because there is no energy or momentum
associated with a virtual fermion, there is no energy-momentum tensor to become infinite.
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Figure 5: We show a geometric feature on a branch of M that is moving with velocity
v. Even if v = c = 1 this manifold has a 3+1 tangent space at every point.

6 Branch recombination from annihilation

We showed the branch separation that can occur as a result of the creation of a pair of virtual fermions
followed by amplitude splitting of those fermions. If those virtual fermions meet virtual photons then
they may reverse direction and annihilate. If this happens then the amplitude splitting of the fermions
is eliminated, which forces the branches to recombine. The branch recombination propagates on the
light cone. In this way, branch separation and recombination are generated by creation and annihilation
events of virtual fermions and propagate on light cones, as shown in Figure 6. It is also possible for the
virtual fermions to annihilate with virtual fermions that originated in a different pair creation, which
would result in more complicated branch structure, as shown in Figure 7. If the distribution of creation,
annihilation, and direction changing events is Lorentz isotropic then the system of virtual fermions is
Lorentz isotropic. In this way, the vacuum can be Lorentz isotropic.

Figure 6: On the left we show the creation and annihilation of a virtual fermion
pair. We take constant time slices through the branched spacetime manifold that are
indicated by the blue dotted lines. On the right, we show the branching associated
with the constant time slices. The first slice shows a branch separation that propa-
gates outward at c. The second slice shows a branch separation followed by branch
recombination that propagates outward at c.

Figure 7: We show the simplest type of creation/annihilation event such that a
virtual pair is created and then annihilate with each other. We also show a more
complicated case of virtual fermion creation and annihilation that generates a more
complicated branch structure. Creation, annihilation, and direction changing events
are indicated with green dots.
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7 Vacuum temperature and vacuum energy

In “Physics on a Branched Knotted Spacetime Manifold” [1], we showed that the creation of parti-
cle/antiparticle pairs requires a strong electric field that allows the distance between the pair to go to
zero as measured by gµν .

Assume initial conditions such that M consists of a single branch with no electromagnetic field and no
virtual or real particles. Then the constraint that gµν is Ricci flat implies that there is no opportunity to
create virtual fermions. Because fermions are necessary for branching, the single branch of M can never
split. In this case we say that the vacuum temperature of M is zero.

If we assume initial conditions such that M does have virtual particles and branches, then those virtual
particles will annihilate when they collide and that annihilation will result in virtual fields that allow the
creation of other virtual particles. It remains to be proven, but it seems likely that there is a conserved
vacuum energy that corresponds to the rate of production of virtual particles. That vacuum energy
would likewise have a vacuum temperature that corresponds to the rate of production of virtual particles
per unit of branch weight. In this description, the vacuum energy is equal to the branch weight multiplied
by the vacuum temperature.
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