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Abstract

We describe entanglement and locality in knot physics. In knot physics, spacetime is a branched

manifold. The quantum information of a system is encoded in the branches of the manifold. We

show how that quantum information can persist despite the continual recombination of the branches

of the manifold. We also note that the quantum collapse of state of the branches is non-local. That

non-locality allows for non-local e↵ects of entanglement without additional assumptions. We apply

this description to the EPR paradox.
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I. INTRODUCTION

This paper describes entanglement in knot physics. Most of the discussion will be un-

derstandable as a description of the properties of a branched manifold. The fundamental

assumptions of the theory are listed in the Appendix of this paper. For additional back-

ground, please see the paper “Physics on a Branched Knotted Spacetime Manifold” [1].

An entangled system is one whose quantum state cannot be factored as product states of

its local constituents. The entanglement can persist even if the constituents are physically

separated from each other. If the parts of the system are measured, the measurements of the

parts are correlated, despite the fact that the states are not definite before the measurement

and the measurements may occur at spacelike separation.

Knot physics assumes a branched 4-manifold embedded in a 6-dimensional Minkowski

space. Quantum mechanics is a consequence of the interactions of the branches of the

manifold. In this paper we describe how those branch interactions produce quantum entan-

glement. The branch structure of the spacetime manifold contains the quantum information

of the system. If we were able to see all the branches of the spacetime manifold at a partic-

ular time, we would have all of the quantum information at that time. This means that we

would know the entanglement of all the particles without needing to know their history.

The quantum information of the branched manifold can be lost as a result of branch

recombination. We find that the dimension of the spacetime manifold has a significant e↵ect

on branch recombination. Likewise, the number of possible quantum states has an important

e↵ect on branch recombination. We show how both of these factors, manifold dimension

and number of quantum states, contributes to the probability of preserving entanglement.

Because the branch structure is non-local, the quantum information is also non-local.

Collapse of state occurs by branch recombination, which can occur outside of the causal

cone. We show how this allows entanglement on the branched manifold to produce correlated

measurements, even if the measurements are performed at spacelike separation.

II. BRANCHING

In this section we describe the branching of the manifold and the way that it applies to

quantum mechanics. In Fig. 1 we begin with the simplest non-trivial branched manifold, a
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branched 1+1-dimensional manifold Y in which the branches separate only once. In Fig. 2

we show how Y can be decomposed into two branches, B1 and B2. We define a branch of the

manifold to have no boundary, which means that B1 and B2 both extend without boundary.

The two branches, B1 and B2, are identical everywhere except within a bounded region, and

are separate on the interior of that region.

A particle corresponds to knots on the spacetime manifold. One real particle has one

knot on every branch of the manifold. We see the simplest example of this in Fig. 3, with a

single real particle on an unbranched 1+1-manifold. We see a slightly more complex example

in Fig. 4, with a single real particle on the branched 1+1-manifold Y . The branches begin

together, then separate, and then recombine. The particle likewise begins as a single knot,

which then separates into two knots on the separated branches, and then later recombines

to a single knot after the branches recombine.

We briefly indicate how this branch structure relates to the quantum wave function. In

Fig. 5 we see a particle on a branched manifold that branches once and a branched manifold

that branches many times. In both cases the real particle has one knot on each branch. In

the case that the manifold branches many times, there are so many knots that we describe

them using a continuous distribution. In [1] we show how that distribution corresponds to

the complex wave function  . In the rest of the paper, we use the branched description of

quantum mechanics, as this is the structure we use to describe entanglement.

The branched spacetime manifold is underconstrained, and its dynamics are determined

by maximization of entropy. The probability of an event is proportional to the number

of branches on which that event occurs. Frequent recombination of branches increases the

number of branches. Branches can recombine more frequently if they are close to each other.

For this reason, maximization of entropy implies that branches tend to stay close to each

other. We call this tendency to stay close to each other “branch cohesion”. In Fig. 6 we

see an example of branch cohesion, where branches staying close to each other increases the

number of branches.

In Fig. 7 we see the relationship between collapse of state and branch cohesion for the

relatively simple case of a 0+1-manifold. If each branch must follow one of two possible

paths, and those paths become increasingly di↵erent from each other, then the branches will

collectively collapse to one of the paths so that the branches can stay close to each other.

As we will see in this paper, increasing the dimension of the branched manifold increases
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the complexity of collapse of state.

FIG. 1 – We assume a branched spacetime manifold. In the diagram, we see a branched

1+1-manifold Y embedded in a Minkowski 2+1-space. The manifold branches once, such that

the two branches are identical on the exterior of the dotted rectangle and separate on the

interior of the dotted rectangle. We take a few constant time slices to show how the branches

separate. In the first slice, there is no branch separation and the constant time slice is just a

single line. In the next three slices, the branches are separate within the rectangle. Each of

those slices consists of branched 1-manifolds with branches that separate in the middle.

FIG. 2 – The branched manifold Y consists of constituent branches B1 and B2, which is to

say Y = B1 [B2. In this figure, and in general, we say that the branches of the manifold have

no boundary, but rather extend to infinity. We take constant time slices through B1, B2, and

Y . Each slice is shown below the respective manifold. B1 and B2 are unbranched, and their

slices are unbranched 1-manifolds. Y is branched and its slice is a branched 1-manifold.
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FIG. 3 – We introduce an unbranched 1+1-manifold U that has a single particle. The path

of the particle is indicated by the black line. We take slices through U , shown on the right.

The particle on U is a knot. On each slice, the knot is indicated by the circle.

FIG. 4 – In Fig. 3 we showed a particle on an unbranched manifold. We now introduce a

particle on the branched 1+1-manifold Y . The particle corresponds to knots on both of the

branches, and the paths taken by those knots are shown by the dark lines. We take constant

time slices to show how the knots (represented by circles) appear on each of the branches. In

the first slice, the branches are not separated, so there is just one knot corresponding to the

particle. In the next three slices, the branches are separated, and both of the branches have

one instance of the knot. Because the branches are separated, the knots are independent of

each other and can move independently. In the last slice, the branches have recombined. The

branches must recombine to a single consistent geometry, and this forces the knots to

recombine. Thus, in the last slice we again see just one knot.
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FIG. 5 – In the left diagram we see a particle on a manifold that branches once. In the right

diagram we see a particle on a manifold that branches many times. We suppress the

representation of the branch separations. There are so many knots that we describe their

location using a probability distribution. In [1] we show how the distribution of knots is

equivalent to the wave function  .

FIG. 6 – These are three diagrams of branched 0+1-manifolds. The diagrams show

branched manifolds with the same total branch weight but di↵erent entropy. (For an

explanation of branch weight, please see [1].) On the left there are just two branches. In the

middle diagram we reduce the x-distance between the branches, which allows them to

recombine. As a result, there are four branches. The first branch is left-left: it begins on the

left and then goes left after the recombination. The other three branches are left-right,

right-left, and right-right. The diagram on the right shows branches that maintain small

x-distances, which allows frequent recombination and many branches. The large number of

branches implies that an event that corresponds to the diagram on the right has greater

probability than an event that occurs on the diagram on the left. To maximize entropy, the

branched manifold keeps the branches close.
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FIG. 7 – The diagram shows collapse of state for a branched 0+1-manifold. We begin with a

branched 0+1-manifold and introduce a hypothetical constraint that each branch will stay

close to one of two paths, illustrated by the dashed black line that splits into two. The

branches will tend to stay close to each other, by branch cohesion. Because the paths diverge

beyond the diameter of branch cohesion, the branches stay close to just one of the paths. We

say that the state of the manifold has collapsed to one of the paths.

FIG. 8 – In the rest of the paper we will suppress the dimensions of the Minkowski

embedding space, for simplicity. For example, the diagram on the left shows the y-dimension

that is perpendicular to the spacetime manifold. In the following diagrams we will use the

representation on the right, which does not include the y-dimension.

III. EPR PARADOX

We examine the EPR paradox in this theory by considering the particular experiment

associated with Bell’s inequality. A particle/antiparticle pair are created and separated.

Then their spins are measured, at spacelike physical separation. While the outcome of the
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spin measurement appears to be determined at the time of measurement, the measurements

produce opposite spins without the opportunity for any causal information to travel from

one measurement to the other.

We show how the EPR experiment occurs on a branched manifold. First, we show how

measurement a↵ects the particle state and the branch structure of the manifold. Then we

show how manifold dimension and the number of quantum states a↵ect the preservation of

quantum information and entanglement.

A. Measurement

To show the EPR experiment on a branched manifold, we begin by showing the mea-

surement of a quantum state on a branched manifold. In Fig. 9, we show a particle passing

through a machine that measures its quantum state. We look at time slices of the exper-

iment to show the branches of the manifold both before and after the measurement. On

each branch, we see the a copy of the machine that performs the measurement. Naturally,

the machine consists of particles and each of those particles has one knot on every branch

of the manifold. We also see the particle that is being measured. On each branch of the

manifold, there is one knot corresponding to that particle. Before the measurement, the

particle corresponds to knots that are in many di↵erent states. The state of the machine

on each branch before the measurement is presumably complicated, but it is uncorrelated

to the state of the knot on its branch. After the measurement, the measurement state of

the machine must be the same as the state of the knot on its branch. Furthermore, the

machine is macroscopic, meaning that the di↵erence between possible measurement states

of the machine is larger than the diameter of branch cohesion. For that reason, the machine

collapses its quantum state and the measurement state of the machine must be the same

on every branch. In other words, if the machine measurement results in “spin up” on one

branch then it must result in “spin up” on every branch. The state of each knot after mea-

surement must be the same as the measurement state of the machine on its branch, and

therefore each knot must be in the same state after measurement, for example, “spin up”.

In Fig. 10, we show the same experiment, but this time we simplify the branch structure

so that we can emphasize the way that quantum information is associated with the branch

structure of the manifold. In this simplified diagram, we take time slices and label each
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point on the branches according to what type of branch it is on. On branch B1, the knot

has spin up before the measurement. On branch B2, the knot has spin down before the

measurement. Each point on the branches is labeled according to whether it is on B1, B2,

or B1 \ B2. In this way we label each point according to the quantum states to which it is

“connected”. We will use this notion of connection by branches to describe entanglement in

this theory. In Fig. 11 we combine the complexity of Fig. 9 with the labeling of Fig. 10. If

the outcome of the measurement corresponds to B1, then all of the points on the branches

after measurement must be connected to the initial B1 state. For that reason, all of the

points after measurement are of type B1 or B1 \ B2.

In Fig. 12 we show the EPR experiment. We create a particle/antiparticle pair and

then measure the spins. In Fig. 13 we see how the experiment appears on a branched 1+1-

manifold. The particle and antiparticle have knots on each of the branches. The knots have

spins (for more about the knot geometry of particle spin, see [1]). On each branch, the

spins of the particle and the antiparticle are opposite to each other. When the branches

recombine, the individual spins of the knots on each branch must recombine to a single spin

state. In Fig. 14 we see the same experiment performed, but the branches recombine in the

middle. That recombination in the middle implies that the quantum states of the particle

and antiparticle are in a product state. In this example, the entanglement is lost.

We have seen an example of entanglement being preserved (Fig. 13) and entanglement

being lost (Fig. 14). In the following sections, we will examine factors that a↵ect the

probability that entanglement will be preserved.
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FIG. 9 – On the left, we show a particle passing through a machine. The machine is

represented by the rectangle. The machine measures the state of the particle and inflates the

result of that measurement to macroscopic size. The result of the measurement is represented

by the color of the machine, in this case red. On the right, we show time slices of the

experiment before and after the measurement. We show the branches of the manifold and the

knots corresponding to the particle. The color of each circle indicates the state of the knot.

On each branch, there is a rectangle representing the machine. In the first slice, the

rectangles are gray, indicating that they are uncorrelated to the particle state. The particle

passes through the machine and interacts with it. The machine is designed so that the

interaction produces a macroscopic e↵ect, a measurement of the particle state. The

macroscopic e↵ect is larger than the diameter of branch cohesion (see Fig. 7), and so the

state measured by the machine must be the same on every branch (in this case red). After

measurement, the state of each knot must be the same as the state of the machine on its

branch. This forces all the knots to likewise be red.
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FIG. 10 – We perform the same experiment as Fig. 9. In this diagram we simplify the

branch structure so that we can emphasize the way that quantum information is associated

with the branches of the manifold. On branch B1, the knot initially has spin up. On branch

B2, the knot initially has spin down. We color the points on the branches according to three

types. Points on B1 are labeled red. Points on B2 are labeled green. Outside of a bounded

region, every point on the manifold is on both branches. These points are of type B1 \B2,

labeled brown. In this example, the machine measures the state of the particle and the state

collapses in the simplest way possible: the branches recombine and the resulting knot has one

of the two initial states, in this case red.
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FIG. 11 – We perform the same experiment as Fig. 9 and Fig. 10. In this diagram we show

the experiment with more complicated branch structure. Points of type B1 (labeled red) are

on a branch such that the knot initially has spin up. Points of type B2 (labeled green) are on

a branch such that the knot initially has spin down. Points that are on a branch connected to

both initial states are of type B1 \B2 (labeled brown). The machine measures the state to

be red, forcing the knots to be red. After measurement, the points are all connected to the

initial red state, and therefore all points are of type B1 or B1 \B2 after measurement.

FIG. 12 – We perform an experiment to test the EPR paradox. We create a

particle/antiparticle pair, which necessarily have opposite spins. We then use machines to

measure the spins of the particles.
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FIG. 13 – In this figure, we show the simplest version of entanglement on a branched

1+1-manifold. We produce a particle/antiparticle pair and show time slices of the manifold.

In the first slice, the branches are not separated and there are no particles. In the next three

slices, there is a particle/antiparticle pair and the two branches are separated. There is a

branch state labeled in red, for which the left particle has spin up and the right particle has

spin down. There is a branch state labeled in green, for which the left particle has spin down

and the right particle has spin up. The entanglement information is encoded in the way that

the knot spins are associated to their branches. When the states are measured, the branches

recombine and the knots collapse to just one spin state, in this case red. (For simplicity, the

machine is not shown on the branch slices. It is implicitly there, forcing the knots to collapse

to one state or the other.)
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FIG. 14 – In this figure we again see the production of a particle/antiparticle pair. In the

first slice, the branches are not separated and there are no particles. In the second slice, the

branches have separated and there is a particle/antiparticle pair. On each of the branches,

the particle knot has opposite spin to the antiparticle knot. In the third slice, the branches

have recombined in the middle, which causes a loss of the entanglement. In the third and

fourth slices, the particles are in a product state. The collapse of state of the two particles is

independent and this leads to the possibility of a green state on the left and a red state on

the right, which is shown in the last slice. This is an example of loss of entanglement. In the

remainder of this paper, we will examine factors that suppress this loss of entanglement.

B. Dimension

We now increase the dimension of the manifold from 1+1 to 2+1. In Fig. 15, we see

the creation of a particle/antiparticle pair, and a constant time slice on a 2+1-manifold.

In Fig. 16, we see the same experiment, but we also decompose the slice to its constituent

branches B1 (labeled red) and B2 (labeled green) that di↵er in the spins of the particles. In

Fig. 17 we see the same experiment, but with a later time slice. After more time has elapsed,

the branches B1 and B2 have had time to recombine with each other. The locations of their

recombinations are denoted by the brown patches. In Fig. 18 we see how entanglement

is preserved on the 1-manifold compared to the 2-manifold. Entanglement is preserved on

the 1-manifold when there are no branch recombinations between the particles. In the case

of the 2-manifold, there may be many branch recombinations that still do not su�ce to

separate the quantum states. In Fig. 19, we see how to separate the quantum states of the
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two particles for the 1-dimensional case and the 2-dimensional case. For the 1-dimensional

case, any recombination between the particles separates their quantum states. For the

2-dimensional case, we see a recombination B1 \ B2 that completely surrounds the right

particle. For that reason, there exists a single branch that has the left particle in state B1

and the right particle in state B2. In general, to separate the particle states there must be

a “cut” that separates one particle from the other and which lies entirely within a branch

intersection. If this happens, then the entanglement has been lost. For the 1-dimensional

case, this condition is relatively common. For the 2-dimensional case, the condition is harder

to achieve, and it is even more di�cult in the 3-dimensional case.

FIG. 15 – This figure shows the EPR experiment performed on a 2+1-manifold. The

particle/antiparticle pair is created and separated. We take a time slice and show the

location of each of the particles in that time slice.
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FIG. 16 – This figure shows the EPR experiment on a branched 2+1-manifold. We

decompose the time slice and find that it consists of two branches (in this example). The

branch B1 (labeled red) has the left particle in spin up and the right particle in spin down.

The branch B2 (labeled green) has the left particle spin down and the right particle spin up.

FIG. 17 – We use the same experiment as the one depicted in Fig. 16, but we now look at a

later time slice. In the later slice, we see that recombinations have occurred between

branches B1 and B2. On the branches, the location of those recombinations (B1 \B2) is

labeled in brown.
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FIG. 18 – In this figure we show entanglement being preserved on a 1+1-manifold and a

2+1-manifold. In the case of the 1+1-manifold, entanglement is preserved when there are no

recombinations between the particles. In the case of the 2+1-manifold, there can be many

branch recombinations that still do not break the entanglement between the left particle and

the right particle.

FIG. 19 – In this figure we show entanglement being lost on a 1+1-manifold and a

2+1-manifold. In both cases, the dotted line shows a separation between the left particle and

the right particle. We see how the red state of the left particle can be on a single branch that

contains the red state on the right, but can also be on a single branch that contains the green

state on the right. This indicates a loss of entanglement. We note that loss of entanglement

is less likely on the 2+1-manifold.
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C. Number of states

Bell’s inequality results from the measurement of the spins of particles, and our previous

description has focused on the case that particles can have one of two spins. Actual particles

have a continuum of possible spins and the knots only recombine with each other if the spins

are similar (or the recombination is forced by collapse of state). E↵ectively, particle spins

have a large number of distinct states. This large number of states is also a reason that

entanglement will tend to be preserved. In Fig. 20, we see the B1 branch of a time slice

of a 2+1-manifold, and it has many intersections with other branches. The other branches

all have distinct particle spins. We attempt a cut that separates the left particle from

the right particle, but that cut does not su�ce to connect two di↵erent quantum states

of the left particle and the right particle. In the figure, we see that the cut is on the

intersections with B2, B3, and B4. A branch that is on both sides of that cut path must be

in (B1 [B2)\ (B1 [B3)\ (B1 [B4), which means that the only branch that can be on both

sides of the cut is B1, which implies that the entanglement is preserved. As the number of

distinct states increases, the probability of preserving entanglement increases.

FIG. 20 – In the left diargam we see the branch B1 and its intersections with branches B2,

B3, B4, etc. There are more than two spin states for a particle, and there are more than two

possible branches. In the right diagram we see an attempted cut to separate the left particle

from the right particle. Given this cut, if the left particle is on branch B1, then the right

particle must be on (B1 [B2) \ (B1 [B3) \ (B1 [B4), which means that it is on B1. This

cut therefore does not imply a loss of entanglement between the left particle and the right

particle.
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D. Spacelike separation

We now return to the EPR experiment to examine how it appears on the branched

manifold. In Fig. 21 we see the apparatus of the experiment and a constant time slice. We

look at that constant time slice and see that the measurement of the left particle can only be

in a di↵erent state from the measurement of the right particle if there exists some cut that

separates them. We also note that there is no conflict from performing these measurements

at spacelike physical separation. The collapse of state associated with measurement is a

consequence of the recombination of branches of the manifold, and we are reminded in

Fig. 22 that branch recombination is not constrained to occur along causal boundaries.

FIG. 21 – We can now show what happens in the EPR experiment on a branched manifold.

The particle/antiparticle pair is created, physically separated, and measured. We take a slice

of the manifold at a time shortly after measurement. Measurement forces a collapse of state

based on the spins of the particles. We can attempt a cut that separates the left particle from

the right particle, but if no cut su�ces then the state of both of them will collapse to the

same state, in this case labeled red. In this paper, we have shown how the dimension of the

manifold and number of possible branch states both contribute to preserving entanglement.
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FIG. 22 – There is no requirement that the boundaries of branch separation stay within

causal cones. The left diagram shows a branch separation and its relationship to a causal

cone. Because the boundary of branch separation can be outside the causal cone, the collapse

of state associated with entangled particles can also occur outside the causal cone. For

example, in the EPR experiment, measurement of the pair of particles can be correlated even

when they are at spacelike physical separation.

IV. CONCLUSION

In this paper we showed how a branched spacetime manifold can maintain quantum

information and how that quantum information can a↵ect measurements, even if the mea-

surements occur at spacelike separation. The EPR paradox thought experiment shows that

entanglement is a necessary component of quantum theory, though quantum mechanics does

not describe physical features that contain the information of that entanglement. In knot

physics, quantum mechanics is a consequence of the interactions of the branches of the

spacetime manifold, and the information of entanglement is encoded in the branches of the

manifold. A particle in this theory corresponds to knots on the branches of the manifold.

One real particle has one knot on every branch. The probability distribution of quantum

states for an individual particle is equal to the probability distribution of the knots on the

branches. For multiple particles, the probability distributions of the corresponding knots

on the branches may be correlated. In this case, we say that the particles are entangled.

We showed that the geometry of the branched manifold has a tendency to preserve the

entanglement of particles, even if they are physically separated from each other. In knot

physics, collapse of state occurs naturally as a consequence of branch recombination. The
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recombination of branches occurs along branch separation boundaries that can be outside

of the causal cone. For that reason, measurement of entangled particles can have correlated

results even when the measurements are performed at spacelike separation.

V. APPENDIX

Knot physics is a unification theory that assumes spacetime is a branched manifold em-

bedded in a Minkowski space. The theory is described in [1], and that description will be

helpful for a more complete understanding of this paper. We list the assumptions of knot

physics here for reference.

• We assume a Minkowski 6-space ⌦. The metric on ⌦ is

⌘µ⌫ = diag(1,�1,�1,�1,�1,�1). The coordinates are x

⌫ .

• We assume a branched 4-manifold M embedded in ⌦. A branch of M is any

closed unbranched 4-manifold B without boundary that is contained inM . The metric

⌘̄µ⌫ on M is inherited from ⌦. For convenience of coordinates we assume that, if M is

flat, then M is in the subspace spanned by x

0
, x

1
, x

2
, x

3.

• We assume non-self-intersection of each branch of M . For any branch B, the

branch B cannot intersect itself. This is necessary to prevent knots from spontaneously

untying.

• We assume a vector field A

⌫
. The field satisfies det(A↵,µA

↵
,⌫) = �1.

• We assume a conformal weight ⇢. Then we define the metric gµ⌫ = ⇢

2
A↵,µA

↵
,⌫

and a Ricci curvature R̂

µ⌫ based on gµ⌫ .

• We assume a constraint on gµ⌫ relative to ⌘µ⌫. The metrics gµ⌫ and ⌘µ⌫ define

sets g+ and ⌘+, and we assume that g+ must intersect ⌘+.

• We assume Ricci flatness R̂

µ⌫ = 0 for gµ⌫.

• We assume that the weight w = (� det(g))1/2 = ⇢

4
is conserved at branching.

• We assume a lower limit w � 1. This implies that the manifold can branch only

a finite number of times.
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