
We reproduce the dynamics of quantum mechanics with a fourdimensional spacetime manifold that is branched and embedded in a sixdimensional Minkowski space. Elementary fermions are represented by knots in the manifold, and these knots have the properties of the familiar particles. We derive a continuous model that approximates the behavior of the manifold's discrete branches. The model produces dynamics on the manifold that corresponds to the gravitational, strong, and electroweak interactions. Physics possesses two fundamental theories, general relativity and the Standard Model, both strongly tested and verified in their respective domains. A naive combination of these theories results in unresolvable infinities. Theorists have produced quantum theories of gravity with varying degrees of success. String theory (or Mtheory) makes few assumptions and has few parameters, and it produces a quantum theory of gravity along with producing familiar particles. Unfortunately, string theory does not specify a particular choice for the way the vacuum's small dimensions should curl up, and most or all predictions depend on this configuration of the CalabiYau space. Loop quantum gravity makes few assumptions and has few parameters, and it produces a quantum theory of gravity and explains a few astrophysical phenomena. Unfortunately, its predictions and explanatory power are quite limited. The theory is fully geometric. We assume that the spacetime manifold can be knotted. From knot theory we know that a piecewise linear nmanifold can be knotted only if it is embedded in an n+2dimensional space. Therefore we assume the 4dimensional spacetime manifold is embedded in a 6dimensional Minkowski space. We assume that the manifold is branched so that paths along the manifold may separate and recombine. In this way we introduce interference and thus a probabilistic theory. In this short presentation we provide an informal description of the theory. This theory begins from very different assumptions than the Standard Model, and this video provides useful conceptual background. A 15 minute, informal introduction to the theory: For a more complete description of the theory  including a full presentation video and the papers  click here. GARRETT BIEHLE received his Ph.D. from Caltech in astrophysics under advisors Kip Thorne and Roger Blandford. He worked out the structure and observational signature of stars with neutrondegenerate cores. GARRETT'S PUBLICATIONS 